Formal System-表达逻辑:Syntax,Semantik

两个例子

看一下怎么用表达逻辑描述问题

数独问题

Dki,j (true,false) 表示第i行,第j列的数值为k是真的或假的。
那么数独的规则则可以如下描述 :
1.每行至少出现一个1:(只写第一行,列与区域以此类推)
D11,1D11,2D11,3D11,4D11,5D11,6D11,7D11,8D11,8
2.每行最多出现一个1:
这个就饶了我吧,太长了,思路是:1所在位置有9种可能性那么就把他们并起来吧
1在第一格的描述如下:
D11,1¬D11,2¬D11,3¬D11,4¬D11,5¬D11,6¬D11,7¬D11,8¬D11,8
3.每个格最多只能有一个数字,表示如下
¬(Dsi,jDti,j)
其中1<=i,j,s,t<=9并且s

八皇后问题

呵呵

表达逻辑的基本概念

逻辑标志:1,0, ¬ , , , , ,(,)
Signatur:Symbol(Atom)的集合,用 表示
Formel:表示为 For0 即公式的意思,包括1,0, ,及 中的各种运算如:非,交,并等
Interpretation:关于 的一个interpretation就是任意的到{true,false}上的映射
表示为I: {ture,false}
取值(Auswertung):每个针对 的Interpretation都有一个确定的取值,表示为:
valI:For0 {true,false}
Modell:Formel A For0 ,当一个针对 的Interpretation I 满足 valI(A)=W . 就说这个Interpretation是Formel A的一个Modell
普遍正确(Allgemeingueltig): AFor0 被称为普遍正确的,当对所有的Interpretation有 valI(A)=true .
可实现(Erfuellbar) AFor0 被称为可实现的,当存在一个Interpretation可以实现 valI(A)=true .
MA :有M可以退出A,即M的任意一个Modell同时也是A的Modell。

例子:一些普遍正确的Formeln

AA //Selbstimplikation
¬AA //Tertium non datur
A(BA) //Abschwaechung 这个可以有
0A //Ex falso quodlibet
(A(AB))B //Modus Ponens 呵呵了
AAA //Idempotenz
(¬¬A)A //Doppelnegation
A(AB)A //Absorption
(AB)((AB)(BA)) //Aequivalenz/Implikation
A(BC)(AB)(AC) //Distributivitaet
A(BC)(AB)(AC) //Distributivitaet
//以上Formeln可通过转换(umformen)或真值表来证明

几个重要的定理

A 可实现 ¬A 普遍正确 //一般用于证明可实现
A A 普遍正确 //即 A 空集恒真
¬A A 不可实现
ABAB
MABMAB

Boolesche Funktionen

就是公式表达式,包括了定义和完备性(Vollstaendigkeit)的说明

Craigsch插值定理(Craigsche Interpolationslemma)

A,B 为AL Formeln并且有 AB 那么就存在C满足 ACCB (C中的Atom不能超出A, B的范围)。这个C就是我们的插值。
那么如何快速的找到这个插值呢,因为插值无论真假对原式并无影响,所以用一下方法找到插值:
假设 P1,...Pn 为在A中出现当却不在B中出现的Atom,从A出发我们通过使用 ci 代替 Pi 构建新的Formeln称为A[ c1,...,cn ],其中 ci {1,0},如此我们可以得到插入值:
C(c1,...,cn)(1,0)nA[c1,...,cn]

简单的例子

A=P1P2,B=P1P3
那么 P2 是A中的Atom,而没出现在B中
A[1]=P11P1
A[0]=P100
C=A[1]A[0]P1
所以 P1 就是插值
//这是P只有一个时的情况所以看起来这方法还是相当不错的
//但是其实这个方法的实用性并不高,因为随着P的数目的增加,A[]的数目呈现指数增长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值