首先容易根据给出的字符串建出trie树
对于查询(x,y),相当于对于y的每一个位置求出他的后缀是否包含x串
那么容易想到建立出ac自动机。
那么就是对于y串的每个位置,其能否通过fail到达x所在节点。
发现其实fail指针会构成一棵树,那么相当于统计在x节点下有多少点属于y串。
发现如果直接枚举是 O(n2) O ( n 2 ) ,那么考虑dfs trie树,记录每个位置是否是y串,
然后查询其对应x串下子树有多少节点是y串节点,然后这个东西容易发现可以直接通过dfs序用树状数组维护
此时复杂度为 O(nlogn) O ( n l o g n )
搞定.
c++代码如下:
#include <bits/stdc++.h>
#define lowbit(x) (x & -x)
#define rep(i,x,y) for(register int i = x ;i <= y; ++ i)
#define repd(i,x,y) for(register int i = x ;i >= y; -- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
x = 0;char c;int sign = 1;
do { c = getchar(); if(c == '-') sign = 1; }while(!isdigit(c));
do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
x *= sign;
}
const int N = 1e5 + 50;
char s[N];
int n,sz = 1,cnt,p[N],fa[N],t[N][27];
inline void insert(char*s)
{
n = strlen(s + 1);
int x = 1;
rep(i,1,n)
{
if(s[i] >= 'a' && s[i] <= 'z')
{
if(!t[x][s[i] - 'a'])
t[x][s[i] - 'a'] = ++ sz,fa[sz] = x;
x = t[x][s[i] - 'a'];
}
if(s[i] == 'B')
x = fa[x];
if(s[i] == 'P')
p[++cnt] = x;
}
}
int tot,head[N],nxt[N],to[N];
inline void add(int x,int y)
{
to[tot] = y;
nxt[tot] = head[x];
head[x] = tot++;
}
int q[N],fail[N],st,en;
inline void build_ac()
{
rep(i,0,25) t[0][i] = 1;
q[st] = 1;
while(st <= en)
{
int x = q[st++];
rep(i,0,25)
if(t[x][i]){
int y = fail[x];
while(!t[y][i]) y = fail[y];
fail[t[x][i]] = t[y][i];
add(t[y][i],t[x][i]);
q[++ en] = t[x][i];
}
}
}
int m,ans[N];
int id[N],idx[N],size[N];
void dfs(int x)
{
id[x] = ++ sz; size[x] = 1;
for(register int i = head[x];~i;i = nxt[i])
{
dfs(to[i]);
size[x] += size[to[i]];
}
}
int T[N];
int Head[N],Nxt[N],Val[N],To[N],Tot;
inline void update(int x,int y)
{
for(register int i = x; i <= n ;i += lowbit(i))
T[i] += y;
}
inline int query(int x)
{
int ans = 0;
for(register int i = x ;i ; i -= lowbit(i))
ans += T[i];
return ans;
}
inline void Add(int x,int y,int w)
{
To[Tot] = y;
Nxt[Tot] = Head[x];
Val[Tot] = w;
Head[x] = Tot++;
}
void Dfs(int x)
{
update(id[x],1);
for(register int i = Head[x];~i;i = Nxt[i])
{
int y = To[i];
ans[Val[i]] = query(id[y] + size[y] - 1) - query(id[y] - 1);
}
rep(i,0,25) if(t[x][i]) Dfs(t[x][i]);
update(id[x],-1);
}
inline void solve()
{
int x,y;
memset(Head,-1,sizeof Head);
read(m);
rep(i,1,m)
{
read(x), read(y);
Add(p[y],p[x],i);
}
sz = 0;dfs(1);
Dfs(1);
rep(i,1,m) printf("%d\n",ans[i]);
}
int main()
{
memset(head,-1,sizeof head);
scanf("%s",s + 1);
insert(s);
build_ac();
solve();
return 0;
}