2434: [Noi2011]阿狸的打字机

首先容易根据给出的字符串建出trie树

对于查询(x,y),相当于对于y的每一个位置求出他的后缀是否包含x串

那么容易想到建立出ac自动机。

那么就是对于y串的每个位置,其能否通过fail到达x所在节点。

发现其实fail指针会构成一棵树,那么相当于统计在x节点下有多少点属于y串。

发现如果直接枚举是 O(n2) O ( n 2 ) ,那么考虑dfs trie树,记录每个位置是否是y串,

然后查询其对应x串下子树有多少节点是y串节点,然后这个东西容易发现可以直接通过dfs序用树状数组维护

此时复杂度为 O(nlogn) O ( n l o g n )

搞定.

c++代码如下:

#include <bits/stdc++.h>
#define lowbit(x) (x & -x)
#define rep(i,x,y) for(register int i = x ;i <= y; ++ i)
#define repd(i,x,y) for(register int i = x ;i >= y; -- i) 
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
    x = 0;char c;int sign = 1;
    do { c = getchar(); if(c == '-') sign = 1; }while(!isdigit(c));
    do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
    x *= sign;
}

const int N = 1e5 + 50;
char s[N];
int n,sz = 1,cnt,p[N],fa[N],t[N][27];

inline void insert(char*s)
{
    n = strlen(s + 1);
    int x = 1;
    rep(i,1,n)
    {
        if(s[i] >= 'a' && s[i] <= 'z')
        {
            if(!t[x][s[i] - 'a'])
                t[x][s[i] - 'a'] = ++ sz,fa[sz] = x;
            x = t[x][s[i] - 'a'];
        }
        if(s[i] == 'B')
            x = fa[x];
        if(s[i] == 'P')
            p[++cnt] = x;
    }
}

int tot,head[N],nxt[N],to[N];
inline void add(int x,int y)
{
    to[tot] = y;
    nxt[tot] = head[x];
    head[x] = tot++;
}

int q[N],fail[N],st,en;
inline void build_ac()
{
    rep(i,0,25) t[0][i] = 1;
    q[st] = 1;
    while(st <= en)
    {
        int x = q[st++];
        rep(i,0,25)
            if(t[x][i]){
                int y = fail[x];
                while(!t[y][i]) y = fail[y];
                fail[t[x][i]] = t[y][i];
                add(t[y][i],t[x][i]);
                q[++ en] = t[x][i];
        }
    }
}

int m,ans[N];
int id[N],idx[N],size[N];

void dfs(int x)
{
    id[x] = ++ sz; size[x] = 1;
    for(register int i = head[x];~i;i = nxt[i])
        {
            dfs(to[i]);
            size[x] += size[to[i]];
        }
}

int T[N];
int Head[N],Nxt[N],Val[N],To[N],Tot;

inline void update(int x,int y)
{
    for(register int i = x; i <= n ;i += lowbit(i))
        T[i] += y;
}

inline int query(int x)
{
    int ans = 0;
    for(register int i = x ;i ; i -= lowbit(i))
        ans += T[i];
    return ans;
}

inline void Add(int x,int y,int w)
{
    To[Tot] = y;
    Nxt[Tot] = Head[x];
    Val[Tot] = w;
    Head[x] = Tot++;
}

void Dfs(int x)
{
    update(id[x],1);
    for(register int i = Head[x];~i;i = Nxt[i])
    {
        int y = To[i];
        ans[Val[i]] = query(id[y] + size[y] - 1) - query(id[y] - 1);
    }
    rep(i,0,25) if(t[x][i]) Dfs(t[x][i]);
    update(id[x],-1);
}

inline void solve()
{
    int x,y;
    memset(Head,-1,sizeof Head);
    read(m);
    rep(i,1,m)
    {
        read(x), read(y);
        Add(p[y],p[x],i);
    }
    sz = 0;dfs(1);
    Dfs(1);

    rep(i,1,m) printf("%d\n",ans[i]);

}

int main()
{
    memset(head,-1,sizeof head);
    scanf("%s",s + 1);
    insert(s);
    build_ac();
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值