笔记整理 | 谭亦鸣,东南大学博士

来源: ACL 2020
链接:https://www.aclweb.org/anthology/2020.coling-main.490.pdf
资源:https://github.com/bernhard2202/intkb.
概述
知识库作为许多下游NLP任务的资源基础,存在的一个普遍缺陷是它的不完整性。目前最好的知识库补全框架则缺乏足够的准确性,无法在脱离人工监督的情况下完全自动化的完成知识补全。因此,作为弥补方案,本文提出了IntKB,一种基于问答pipeline的交互式图谱补全框架。该框架的设计面向“人在回路”范式的特性需求:i. 该系统生成的事实与文本片段一致,可由人类直接验证。ii. 该系统设计为可在知识库补全过程中不断学习,因此能够使zero-或者few-shot的初始状态随着时间推移而显著提升性能。iii. 当且仅当存在足够信息进行正确预测的情况下,才会出发与人的交互。因此,作者采用负例和无答案的fold-option来训练系统。该框架在实验中取得较好的性能:对于初始状态下的未见关系,它实现了29.7%的Hits@1,并且在此基础上,这个结果

论文介绍了IntKB,一个基于问答pipeline的交互式知识图谱补全框架,解决了知识库不完整的问题。该框架包括句子筛选、关系抽取和答案重排序三个阶段,能不断学习并利用用户反馈提升性能。实验表明,IntKB在zero-shot关系预测上表现出色。
最低0.47元/天 解锁文章
1415

被折叠的 条评论
为什么被折叠?



