- 博客(1146)
- 收藏
- 关注
原创 论文浅尝 | HOLMES:面向大语言模型多跳问答的超关系知识图谱方法(ACL2024)
根据问题和领域内的知识构建查询对齐的知识架构,用其对超关系知识图进行裁剪,保留与查询相关的信息。然后,在文档和实体节点之间建立边缘,形成了一个两分图,该图捕获了实体与它们出现的文档之间的连接,通过层次遍历来探索相关的潜在语义图,并利用。为了消除超关系图中与检索无关的信息,作者构建了一个与查询对准的知识模式,图模式使用两个来源填充:通过识别推理查询中的关系得出模式元素,然后使用。该方法的关键思想是识别包含多跳问题答案的文档子集,随后从它们中提取上下文感知的结构化信息,进一步使用基于查询的。
2025-05-16 19:41:03
201
转载 会议交流 | AI Agent 知识工程及在真实场景落地探索
如何优化 Function Call?RAG、ChatBI、Agent 知识工程怎么搞?Data Agent、具身 Agent 是未来趋势吗?AI Agent 在真实场景的最佳实践?AI Agent 有哪些协同新范式?5月17日,09:20-21:00,在 DataFun 举办的「AI Agent 技术峰会」将邀请20余位AI Agent一线专家学者,就AI Agent的知识工程、端侧应用、Data Agent、具身 Agent、人机协同、最佳实践等话题进行深度分享,感兴趣的小伙伴,欢迎识别二维码,免费报名
2025-05-15 19:00:59
44
转载 技术动态 | SymAgent:一种神经符号自学习代理框架,用于知识图谱上的复杂推理
具体来说,需要将KG的符号结构与LLMs的神经表示对齐,处理KG信息不足的情况,并在仅有自然语言输入输出对的情况下解锁LLMs的全部推理潜力。:错误分析表明,WebQSP的错误主要是推理错误(94.34%),而CWQ和MetaQA-3hop的错误分布更为多样化,显著存在超出最大步数(EMS)的错误,表明未来在这些领域有改进的空间。通过这些动作工具的组合使用,Agent-Executor模块能够有效地整合KG和外部文档的信息,解决KG不完整性的问题,从而提高推理的准确性和完整性。
2025-05-14 16:31:00
15
原创 论文浅尝 | 基于关系感知锚点增强的知识图谱补全(AAAI2025)
在本文中,通过观察和验证,我们发现了一个被忽视的事实,即查询中头部实体的关系感知邻居可以作为更精确的链接预测的有效上下文。具体来说,在我们的方法中,为了提供目标实体可能是什么样子的参考,我们首先在头部实体的关系感知邻域中生成锚实体。我们大量的实验结果不仅验证了RAA-KGC的有效性,而且还表明,通过集成我们的关系感知锚点增强策略,可以显著提高当前领先方法的性能,而无需进行实质性修改。本文提出了RAA-KGC方法,通过生成目标实体的一般示例并将其嵌入拉向锚点邻域,显著提高了知识图谱补全的性能。
2025-05-09 19:41:06
598
转载 技术动态 | 多模态关系网络在金融风控中的应用和落地实践
在进行多模态关系网络构建的时候,会根据相似度,比如达到一定阈值,就可以建一个关系,导入到关系网络中。多模态关系网络构建是这样一个流程,在整个信贷过程中,会有 OCR 环节,活体环节以及填写表单环节,包括提现、贷中、贷后环节,其实每个环节都会采集到用户的 GPS、手机设备、身份证图像、身份证、OCR,然后这些信息其实都可以去进行算法的处理,去建立关系,然后喂入到关系网络里,在真实的业务发生过程中,也可以通过这种方式去进行关系的及时查询,从而去参与一些策略决策,比如把用户直接转人工或者直接拒绝掉等等。
2025-05-07 19:40:43
62
转载 技术动态 | MedReason:通过知识图谱在大型语言模型中引导事实性医学推理步骤
通过利用结构化的知识图谱来锚定推理过程,生成医学上基于事实且可解释的解释,增强了LLMs生成的推理的临床有效性。例如,Medical-CoT-8B在MedBullets(op4)上的平均提高为5.3%,而DeepSeek-Distill-8B在MedBullets(op5)上的提高更为显著,达到7.7%。例如,Medical-CoT-8B在MedBullets(op4)上的平均提高为5.3%,而DeepSeek-Distill-8B在MedBullets(op5)上的提高更为显著,达到7.7%。
2025-05-05 10:01:17
42
原创 论文浅尝 | ChainsFormer: “从图到链”的知识图谱数值推理
时,我们会基于查询实体在KG中进行检索,获得相关的关系链集合构建Tree of Chain(ToC),随着关系链长度的延伸,候选链数量会变得非常庞大,这不仅带来了噪声,也增加了计算成本。基于上下文的链表示:对于每一个查询q和一条关系链,Chain Encoder利用Transformer模型编码关系链的顺序结构,捕捉关系和属性之间的上下文关联,获得每一条链的表征。数值感知的仿射变换:结合属性与数值分布,Chain Encoder通过对链表征的仿射变换以灵活适应数值属性在推理过程中的变化。
2025-05-01 19:53:00
947
转载 技术动态 | 让RAG不止于检索,更学会思考——RAG与推理深度融合的新时代
从RAG到RAG + 推理的升级则增加了多步推理能力,使系统能够处理复杂任务、自主决策,并通过复杂推理提供更具上下文感知的回答。未来的研究方向值得关注,包括基于图结构的知识整合、多模态与多模型的协同推理架构,以及利用强化学习等先进技术,进一步优化检索与推理的整体工作流。本文聚焦RAG与推理能力深度融合的最新进展,探讨如何让RAG突破单纯检索,具备多步逻辑思考能力,实现更复杂的任务。:缺乏对复杂意图的深入理解,检索策略静态且难适应多步推理,难以高效平衡准确与速度,对多模态、动态知识整合能力不足。
2025-04-29 16:20:38
43
转载 征稿通知 | 多模态智能体技术与应用
担任中国中文信息学会语言与知识计算专委会、大模型与生成专委会委员,中国计算机学会信息系统专委会、自然语言处理专委会执行委员,CCF YOCSEF南京24-25年度主席,国际著名期刊International Journal on Semantic Web and Information Systems、Data Intelligence编委及多个国际著名会议的领域主席、(高级)程序委员会成员,包括AAAI、IJCAI、NeurIPS、ACL、WWW、KDD、SIGIR、ICML、ICLR等。
2025-04-28 19:40:56
55
原创 论文浅尝 | MedIE-Instruct: 一个用于医学信息抽取的综合指令数据集(ICKG2024)
Medical Information Extraction, IE)是自然语言处理(NLP)领域中的核心任务之一,主要包括命名实体识别(Named Entity Recognition, NER)、关系抽取(Relation Extraction, RE)和事件抽取(Event Extraction, EE)。"output": {"疾病": ["胃癌"], "药物": [], "解剖部位": []}"schema": ["疾病", "药物", "解剖部位"],Qwen1.5-14B(大规模中文模型)
2025-04-25 19:40:57
588
转载 技术动态 | 本体嵌入:新型本体表示学习方法(东南大学漆桂林教授团队)
这种割裂导致现有方法在知识表示全面性上的局限性。它通过外延空间的几何化表示和内涵空间的预训练语言模型(如Sentence-BERT)实现双空间建模,并采用联合训练机制优化表示。:在关系三元组预测中,EIKE的在YAGO39K和DB99K-242的Hits@10分别达到76.2%和50.3%,均超过基线方法(75.1%和48.1%),显示外延建模对实例关系的增强作用。:采用几何化表示,将概念建模为椭球区域,实例表示为空间中的点,通过区域包含关系刻画InstanceOf和SubClassOf的层次结构。
2025-04-23 19:40:35
61
转载 技术动态 | OpenSPG/KAG V0.7发布,多方面优化提升,事实推理效果领先且构建成本降至11%
在未来的工作中,我们将持续扩充更多Benchmark数据集,并提供针对不同领域的解决方案,进一步提升大模型利用外部知识的准确性、严谨性和一致性。近期版本迭代中,我们持续致力于持续提升大模型利用外部知识库的能力,实现大模型与符号知识的双向增强和有机融合,不断提升专业场景推理问答的事实性、严谨性和一致性等,我们也将持续发布,不断提升能力的上限,不断推进垂直领域的落地。特别值得关注的是,为更好的促进KAG的规模化业务应用,同时也回应社区最为关切的知识构建成本高的问题,本次发布提供了。
2025-04-18 19:40:24
240
原创 论文浅尝 | KG-FIT: 融合开放世界知识的知识图谱嵌入优化框架(NeurIPS2024)
生成实体的文本描述,并利用嵌入模型对实体名称及生成的文本描述进行嵌入,随后对实体名称和描述文本的嵌入表示进行拼接,构建初始实体嵌入表示。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。微调方法,该方法结合了层次结构中的知识和实体的预训练文本嵌入,通过整合大语言模型所捕获的开放世界知识来增强。通过在基准数据集上的广泛实证研究,证明了在链接预测准确性方面,相较于最先进的基线方法,引导优化的方法,自动构建语义连贯的实体层次结构。
2025-04-16 19:40:39
611
转载 技术动态 | 大语言模型增强的知识表示学习
发表期刊:Data Science and Engineering发表时间:2025-04-07(在线发表)作者:Xin Wang, Zirui Chen, Haofen Wang, Leong Hou U, Zhao Li, Wenbin Guo原文链接:https://link.springer.com/article/10.1007/s41019-025-00285-yDOI:https://doi.org/10.1007/s41019-025-00285-y点击文末左下角“阅读原文”可获取综述PDF
2025-04-15 09:59:49
12
转载 论文浅尝 | 通过复杂逻辑假设生成推进知识图谱中的溯因推理(AAAI2025)
例如,在认知神经科学中,反向推理作为溯因推理的一种形式,对于根据观察到的大脑激活模式推断潜在的认知过程至关重要。尽管它简单且复杂度与边的数量呈线性关系,但该算法比我们的方法需要更多的时间,更不用说其他更复杂的启发式算法了。由于每个假设都可以表示为一个有向无环图,对于假设,我们使用一种受基于动作的解析启发的表示方法,类似于其他逻辑推理研究中的方法。对于观察,我们标准化元素的顺序,确保相同观察集的不同排列产生相同的输出。解决这个推理任务的一种直接方法是采用基于搜索的方法,根据给定的观察结果探索潜在的假设。
2025-04-09 19:41:07
129
转载 技术动态 | 医学知识图谱驱动的GraphRAG:Deepseek-R1与Weaviate用于高级Chatbot
实验结果显示,该方法显著减少了幻觉,提高了事实精确度,并改善了生成回应的清晰度,为高级生物医学聊天机器人应用提供了一个稳健的解决方案。:提出了一个结合结构化生物医学知识与大型语言模型(LLMs)的检索增强生成(RAG)框架,通过将LLMs与知识图谱(KGs)结合,提高了生成响应的可靠性和清晰度。:该问题的研究难点包括:LLMs容易生成未经验证的输出,如何在生成响应时保持上下文相关性和事实准确性,以及如何有效地将结构化的生物医学知识与LLMs结合。这意味着生成的响应更加可靠,减少了不准确或不真实的信息。
2025-04-07 19:40:34
95
原创 论文浅尝 | Interactive-KBQA:基于大语言模型的多轮交互KBQA(ACL2024)
这种方法不仅降低了标注成本,还通过交互式工具(如搜索节点、图模式匹配)增强了复杂问题的处理能力,并通过人工干预机制提高了系统的灵活性和可解释性。最后,实验集中于特定领域(如电影、人物),未验证在开放域或动态更新知识库中的适应性,且人工标注数据集的规模较小,可能影响模型鲁棒性。构建提示模板Prompt={Inst,E,Q},其中Inst为任务指令,E为示例集合,Q为当前问题。},并继续生成后续步骤。通过标准化工具接口,实现了跨异构知识库的兼容性,简化了复杂查询(如多跳、数值约束、限定符)的处理流程。
2025-04-02 19:41:00
955
转载 SCI特刊 | 大语言模型赋能医疗信息处理与分析:机遇、挑战与前沿探索
在技术层面,模型的可扩展性问题亟待解决,随着医疗数据规模的指数级增长,如何确保模型在处理大规模数据时维持高效稳定的性能,是当前研究的关键难点之一;在征稿要求上,鼓励研究者不仅要展示这些技术革新医疗领域的潜力,更要以批判性思维审视其潜在影响,通过严谨的研究方法和数据分析,为人工智能在医疗领域的负责任发展提供理论支撑和实践指导。期刊的编辑团队汇聚了来自全球顶尖高校和研究机构的权威专家,他们凭借深厚的学术造诣和丰富的行业经验,为投稿论文提供专业、严谨的评审,确保特刊的学术质量。
2025-03-31 11:20:48
107
转载 征稿 | The LLM+GRAPH Workshop (VLDB 2025)
OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。,进入 OpenKG 网站。
2025-03-28 19:41:08
206
原创 论文浅尝 | C-ICL:用于信息抽取的对比式上下文学习(EMNLP2024)
首先,基于语义相似性的检索方法用于选择正样本,即通过语义嵌入计算测试数据与训练数据之间的相似度,并选取最相关的示例作为上下文展示。)引入高难度负样本选择策略,基于模型预测的错误样本进行筛选,并通过语义相似度匹配出相关的正样本,提高负样本的利用价值。该方法的核心思想是,在传统的上下文学习(在信息抽取任务中的有效性,尤其是在少样本和复杂推理场景下,其表现远超现有方法,并展示了较强的泛化能力和鲁棒性。)框架下,不仅使用正确示例(正样本),还引入错误示例(负样本),以增强模型的泛化能力和自我纠正能力。
2025-03-26 19:40:50
765
转载 技术动态 | 利用大型语言模型增强知识图谱查询
论文评价转载公众号 | 知识图谱科技摘要采用知识图谱(KGs)作为结构化、面向语义的、数据表示模型,显著提高了跨不同领域的数据集成、推理和查询能力。这在现代场景中尤为真实,例如工业5.0,其中人类、智能设备和生产过程产生的数据的整合起着至关重要的作用。然而,由于技术复杂性,非专家用户使用形式查询语言管理、检索和可视化知识图谱中的数据可能很困难,从而限制了它们在工业环境内的应用。因此,我们引入了SparqLLM框架,该框架利用检索增强生成(RAG)解决方案来提升对知识图谱(KGs)的查询。
2025-03-24 19:41:05
74
原创 论文浅尝 | KnowGPT:利用知识图谱增强大型语言模型的专业领域问答能力(NeurIPS2024)
通过巧妙地结合KG提供的结构化信息和支持,KnowGPT实现了更加精准的回答生成,为未来进一步探索LLM与外部知识源之间的协同作用奠定了坚实的基础。为了克服这一问题,提出了一个结合知识图谱(KG)与LLM的新框架——KnowGPT,旨在通过注入领域特定的知识来提升LLM回答专业问题的准确性。(1)提出了一种新的框架:提出了一个名为KnowGPT的新框架,该框架能够有效地将KG集成到LLM中,以辅助LLM准确回答专业领域的问题。,进入 OpenKG 网站。
2025-03-21 19:40:26
1042
转载 技术动态 | 将知识图谱与大模型 (LLM) 协同化:实现语义增强智能的途径
此外,研发将加速,LLM 和 KG 协同合作,以实现文献综述的自动化,培养新颖的研究理念,并预测实验结果。从技术角度来看,将 LLM 与 KG 合并需要复杂的算法,能够处理 KG 结构的复杂性和 LLM 处理的自然语言的细微差别。我们解释了 LLM 和 KG 的复杂性,展示了它们的优势,并展示了它们的组合如何导致更高效、更全面的知识处理并提高 AI 应用程序的性能。来自 KG 的经过验证的数据是坚实的基础,减少了 LLM 处理的信息中的歧义和错误,从而确保更高质量的输出,值得信赖、可追溯且上下文连贯。
2025-03-19 19:40:19
179
转载 新闻动态 | IEEE P2807.7标准《开放域知识图谱发布和众包服务指南》第二次编制工作会成功召开
IEEE/C/KESC将联合全球产业力量,夯实协作基础,不断推动知识表示、知识建模、知识获取、知识存储、知识计算、知识管理、知识维护、知识应用等知识全生命周期相关标准的研制,提高我国与国际知识工程标准的联动性,为知识工程产业健康有序发展起到指导、规范、引领和保障作用。本次会议聚集了来自浙江大学、同济大学、东南大学、清华大学、北京大学、南京大学、天津大学、复旦大学、国科大杭高院、杭州电子科技大学、之江实验室、东海实验室、云知声、南京柯基数据、途普智能、中移杭研、上海人工智能研究院、浙江大学舟山海洋研究中心。
2025-03-14 19:41:04
62
转载 会议交流 | KG+推理大模型新范式:动态知识注入与混合推理双向协同
大模型(LLMs)与知识图谱的协同演进正在为认知智能领域带来革命性的变化,2024年标志着大模型与知识图谱深度融合的元年,这一融合不仅提升了知识图谱的构建效率与准确性,还为大模型在垂直领域的应用提供了更强的可解释性和可靠性。同济大学百人计划特聘研究员、OpenKG轮值主席王昊奋教授将在3月14号的技术峰会上,分享他在KG+LLM领域的前沿研究成果与实践经验。演讲主题:智谱共融:大模型驱动的知识图谱...
2025-03-13 15:00:25
186
原创 论文浅尝 | DPCL-Diff:基于双域周期对比学习的图节点扩散模型的时间知识图推理(AAAI2025)...
笔记整理:曲晏林,天津大学硕士,研究方向为大模型论文链接:https://arxiv.org/abs/2411.01477发表会议:AAAI 20251. 动机传统的知识图谱以静态关系三元组(s,r,o)的形式集成事实(也称为事件),其中s和o分别表示主题和对象实体,r表示关系类型。然而,在现实世界中,知识不断发展并不断表现出复杂的时间动态,这启发了时间知识图谱(Temporal Knowledg...
2025-03-12 19:40:44
667
转载 EDBT 2025 Tutorial | 基于大语言模型与知识图谱的问答技术研究:最新进展与机遇...
EDBT 2025 Tutorial基于大语言模型与知识图谱的问答技术研究:最新进展与机遇01时间10:30 AM - 12:30 PM, 27th March02地点Barcelona, Spain03链接https://edbticdt2025.upc.edu/?contents=accepted-papers-tutorials.html01|Overview大语言模型(LLM)因其在自然语...
2025-03-10 19:41:09
170
转载 技术动态 | Graph RAG-Tool Fusion:将知识图谱用于Agent工具编排实现思路
转载公众号| 老刘说NLP今天我们来看GraphRAG进展。看用于Agent的一个思路。随着多智能体系统变得更加复杂,包含大规模工具、API或作为工具的代理,工具通常对其他工具有依赖性,无论是其效用函数、填写参数所需的必要工具,还是类操作系统工具。所以,可以使用基于知识图谱来组织Agent的一个方案,这其实使用RAG来做工具查找。专题化,体系化,会有更多深度思考。大家一起加油。一、用Graph来...
2025-03-07 19:40:47
119
转载 论文浅尝 | 迈向更全面的多模态大模型:多模态大模型如何突破模态与任务限制?(哈工大SCIR)...
论文链接:https://arxiv.org/abs/2412.11694仓库链接:https://github.com/threegold116/Awesome-Omni-MLLMs1. 引言不断发展的多模态大语言模型(MLLMs)展现了实现通用人工智能的潜力,其通过将大语言模型与特定模态的预训练模型结合,扩展了单一非语言模态的理解与生成能力,例如视觉MLLMs、音频MLLMs和3D-MLLMs...
2025-03-05 19:41:05
64
转载 技术动态 | 知识图谱引导的检索增强生成RAG
转载公众号 | 知识图谱科技摘要检索增强生成(RAG)作为一种有前途的技术出现,用于解决大型语言模型(LLMs)生成的响应中的幻觉问题。现有的RAG研究主要集中在应用基于语义的方法检索孤立的相关片段,忽略了它们之间的内在关系。本文提出了一种新颖的知识图谱引导的检索增强生成(KG2RAG)框架,该框架利用知识图谱(KGs)提供片段之间的事实级关系,提高检索结果的多样性和连贯性。具体来说,在进行基于语...
2025-03-03 19:41:02
220
原创 论文浅尝 | 语言模型真的了解领域吗?一个本体学习的视角(ISWC2024)
笔记整理:屠铭尘,浙江大学硕士生,研究方向为知识图谱论文链接:https://arxiv.org/abs/2407.19998发表会议:ISWC 20241. 动机目前,大语言模型已经被广泛应用在KBC(知识库补全)、OL(本体学习)等词汇语义相关任务中。然而,我们并不知道语言模型是否真的具备了在非结构或半结构化知识中推理的能力,还是仅仅掌握了语言中的一些模式。这个问题在语言模型的专业领域应用上非...
2025-02-26 19:41:04
786
转载 技术动态 | KnowNET:通过知识图谱集成大模型引导健康信息抽取
转载公众号 |知识图谱科技摘要随着对大型语言模型(LLMs)在健康信息搜索中依赖性的增加,由于潜在的错误信息和这些主题的复杂性,可能会带来严重风险。本文介绍了KNOwNET这一可视化系统,它将LLMs与知识图谱(KG)相结合,以提供更高的准确性和结构化探索。具体来说,为了提高准确性,KNOwNET从LLM输出中提取三元组(例如,实体及其关系),并将它们映射到外部KGs中的已验证信息和支持证据。为...
2025-02-24 19:40:42
147
转载 论文浅尝 | 知识图谱的检索和推理:将知识图谱集成到大型语言模型中用于复杂问答(ACL2024)...
笔记整理:金龙,浙江大学硕士,研究方向为知识图谱论文链接:https://aclanthology.org/2024.findings-emnlp.446发表会议:ACL 20241. 动机尽管大型语言模型在各种自然语言处理任务中表现出色,但其固有的幻觉现象严重影响了它们在复杂推理中的可信度。将可解释的知识图谱与大模型相结合已经成为当下研究的重点。以知识图谱问答任务为例,当前的主要问题:1)是如何...
2025-02-21 19:40:24
179
转载 技术动态 | 比GraphRAG更懂“思考”,微软又开源PIKE-RAG:主打复杂私域知识理解和推理...
继GraphRAG之后,微软又发布PIKE-RAG,主打在复杂企业场景中私域知识提取、推理和应用能力,PIKE-RAG 已在工业制造、采矿、制药等领域进行了测试,显著提升了问答准确率。报告、代码、demo均已开源(在文末)。demo示例:多层次异构的知识库构建与检索+自我进化的领域知识学习RAG系统在满足现实世界应用的复杂和多样化需求方面仍然面临挑战。仅依靠直接检索不足以从专业语料库中提取深度领域...
2025-02-19 19:40:34
195
转载 技术动态 | 智能体Agent推理:利用知识图谱推理工具进行深度研究
转载公众号 |知识图谱科技摘要在这篇技术报告中,我们介绍了一种名为代理性推理的框架,该框架通过整合外部工具使用代理来增强大型语言模型(LLM)的推理能力。与仅依赖内部推理的传统基于LLM的推理方法不同,代理性推理动态地结合网络搜索、代码执行和结构化推理-上下文记忆来解决需要深度研究和多步逻辑演绎的复杂问题。我们的框架引入了思维导图代理,它构建了一个结构化的知识图谱来跟踪逻辑关系,从而提高演绎推理...
2025-02-17 19:40:47
177
原创 论文浅尝 | 知识增强的药物发现表示学习(AAAI2024)
笔记整理:秦铭,浙江大学博士生,研究方向为科学交叉场景下大模型的研究与应用论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/28924发表会议:AAAI 20241. 动机近年来,通过自监督学习从大规模蛋白质和分子数据库中获得的分子和蛋白质表示在药物发现中发挥了重要作用。然而,这些方法往往仅限于单一数据模式,未能利用分子和蛋白质之间的丰富关...
2025-02-14 19:41:00
753
转载 技术动态 | HeGTa:利用异构图增强的大语言模型进行少样本的复杂表格理解(AAAI2025)...
转载公众号|东南COIN题目:HeGTa: Leveraging Heterogeneous Graph-enhanced Large Language Models for Few-shot Complex Table Understanding作者:金日辉1,2、李煜1、漆桂林1、胡楠1、李元放2、陈矫彦3、王佳楠4、陈永锐1、闵德海1、毕胜1作者单位:1东南大学认知智能研究所、2蒙纳士大...
2025-02-12 19:40:19
587
转载 技术动态 | “大模型+知识图谱”双轮驱动的见解、技术和评估
转载公众号 |知识图谱科技Insights, Techniques, and Evaluation for LLM-Driven Knowledge Graphs作者:Rohan Rao、Benika Hall、Sunil Patel、Christopher Brissette 和 Gordana Neskovic,12月16, 2024摘要本文探讨了如何将大型语言模型(LLMs)与知识图谱相...
2025-02-10 19:40:57
202
原创 论文浅尝 | CogMG:大语言模型与知识图谱的协同增强(ACL2024)
笔记整理:杜超超,天津大学硕士,研究方向为自然语言处理、大语言模型论文链接:https://aclanthology.org/2024.acl-demos.35.pdf发表会议:ACL 20241. 动机大语言模型(LLMs)在问答任务中已经被广泛应用,然而LLMs容易出现幻觉和事实性错误。虽然可以通过查询知识图谱(KG)来减少这种幻觉,但是存在两个挑战:(1)KG中的知识可能覆盖不完全:KG有能...
2025-02-07 19:40:37
1263
原创 SIG 动态 | OneGraph发布更新:大模型驱动的开放知识图谱
OneGraph是OpenKG SIGData兴趣小组发起贡献的开放知识图谱项目,致力于利用大模型构建LLM需要的中文开放知识图谱。2024年10月24日,OpenKG在CNCC中国计算机大会知识图谱论坛上首次发布OneGraph V1版本。在2025年1月举办的OpenKG年度论坛上,SIGData兴趣组再次发布OneGraph更新。本文简要介绍了OneGraph的设计理念,主要实验及最新进展。...
2025-02-05 14:01:02
777
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人