自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

开放知识图谱

OpenKG:开放促进互联、链接创造价值

  • 博客(1273)
  • 收藏
  • 关注

原创 马蹄声碎、水月留金 | OpenKG新春首发SkillNet:大规模智能体“技能图谱”知识库

以科学技能为例(如下图),SkillNet 覆盖了从文献检索、假设生成、实验设计到结果分析与失败归因的完整科研流程,将隐含于专家经验中的过程性知识与策略性决策,转化为可显式建模、可复用、可组合的能力结构。Skill 不仅是可执行的知识,更是可衡量、可复用、可演化的能力构件。正是这种模块化表征,使智能体得以基于既有能力库进行高效组合与灵活迁移,彻底摆脱从零试错的困境,从而实现真正的“知技·善任”——既能掌握技能,更能善于任用,为构建更通用、更鲁棒的人工智能系统奠定关键的能力基石。

2026-02-17 10:03:37 163

转载 技术动态 | DeepAgent与DeepSearch双双霸榜!答案指向openJiuwen这一新兴开源项目

针对执行过程中的异常或失败,能自动归因并将更新信号精准分配到对应要素,完成 Agent 的全链路自优化,让智能体能够持续演进、可控迭代、并越用越好,从底层保障了智能体在榜单严苛评测中的稳定表现。GAIA 的任务大量涉及真实环境操作,DeepAgent 并未将这些能力零散地「外包」给各类独立工具,而是通过统一的工具网关与编排机制,把外部 API、系统与数据库抽象为标准化能力节点,不仅支持高并发的异步调度,更实现了工具调用的可控、可查、可回放,支持执行过程复盘与可靠性审计。

2026-02-15 17:02:55 37

转载 东南大学漆桂林教授干货分享:基于动态本体的灵活可更新知识库

截至目前,已经发表高质量学术论文150篇多篇,特别是在国际人工智能著名会议IJCAI、AAAI、KR、UAI以及国际语义Web著名会议ISWC、ESWC发表多篇会议文章,在国际著名杂志Journal of Web Semantics、Information Science和 Fuzzy Sets and Systems等发表多篇杂志文章。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。获得江苏省六大人才高峰计划资助。

2026-02-14 10:01:50 12

转载 技术动态 | 治理体系 + 数据上新!UltraData 数据分级治理体系发布,以科学治理赋能 AGI

从原始数据(L0)经基础过滤(L1)、模型精筛(L2)、合成与增强(L3),到最终可直接用于编排的数据(L4),每一级都对应明确的处理标准和应用场景,避免 “一刀切” 的粗放式加工,最大化单位数据的训练价值。每一次范式跃迁,既延伸和重构了前一阶段的数据驱动策略,又演进出新的数据利用方式,从而推动模型能力的跃升与涌现。高质量公开数据资源正逐渐逼近枯竭点,未来的模型演进无法继续单纯依赖数据规模的增长,这迫使数据科学必须从粗放式的规模扩张迈向精细化的数据治理与利用,以挖掘存量数据的深层价值;

2026-02-12 11:01:18 20

原创 论文浅尝 | PathMind:基于检索-排序-推理的知识图谱大语言模型推理框架(AAAI2026)

框架包括子图检索、路径优先级和知识推理模块,前者提取查询相关子图,后者使用语义感知优先级函数识别重要路径,最后通过双阶段训练(指令微调和偏好对齐)引导 LLM 生成准确响应。作为 LLM 骨干,子图检索采样 3 跳邻域,路径优先级使用 GNN 学习表示,top-K=3,迭代 T=2 (WebQSP) 或 4 (CWQ)。框架,采用“Retrieve-Prioritize-Reason”范式,通过选择性引导 LLM 使用重要推理路径,提升推理的忠实度和可解释性。优于基线,尤其在复杂任务和效率上。

2026-02-09 19:40:48 455

原创 开源开放 | ElementKG 2.0: 重构化学数据维度,赋能AI智能体的“认知中枢”

抽取并整理反应物与产物关系、条件与产率等关键要素,同时将实验流程中的步骤描述、试剂用量、操作顺序以及常用仪器与动作进行结构化表示,使反应知识能够自然延伸到可执行的实验层。”全链条的化学知识底座,旨为大模型驱动的反应预测、实验步骤生成与多跳推理问答等任务提供了统一的化学知识支撑,构建化学智能体可复用的“认知中枢”。作为专为化学智能体打造的“认知中枢”,它将扁平的记录转化为可计算的知识网络,支持稳定检索与组合推理,从而填补了计算预测与真实实验之间的空白。完整数据通过书生科学发现平台提供。

2026-02-08 16:39:54 458

原创 新闻动态 | OpenKG年度论坛(2025)在湖州成功举办

OpenKG 社区将继续秉持 “开放促进互联,链接创造价值” 的理念,聚集产学研多方力量,推动以中文为核心的知识图谱数据开放、工具开源与生态共建,为千行百业的智能化升级提供核心支撑。陈为教授以《基于可视分析的新型计算架构的可解释性研究》为主题,通过可视化技术直观呈现知识图谱与大模型融合架构的运行逻辑,为复杂系统的可解释性优化提供新视角。张奇老师聚焦《大语言模型能力来源与边界》,从理论与实验双维度拆解大模型的能力本质,指出知识图谱在弥补大模型 “知识盲区” 与 “逻辑短板” 中的关键作用。

2026-02-05 10:14:15 349

原创 OpenKG更新Dynamic OneEval 榜单

后面依次是 DeepSeek-V3.2 50.3%、Doubao-Seed-1.6 47.6%、Llama3.1-70B 44.9%、Llama3.1-8B 42.2%。我们在统一实验设置下使用 Dynamic OneEval 对多款前沿大模型进行评测(Gemini3-pro、Claude-Sonnet-4.5、QWQ-32B、HunYuan-2.0、GPT-5.2、Qwen2.5-72B、Llama3.1-70B/8B、Qwen3-235B、Doubao-Seed-1.6、DeepSeek-V3.2)。

2026-02-04 18:11:19 401

转载 征稿通知 | 第二十届全国知识图谱与语义计算大会(CCKS 2026)

大会将聚焦知识表示、知识存储、知识挖掘、知识融合、知识推理、可解释性、记忆增强、认知计算等知识图谱与大模型关键技术,引导知识驱动的新一代认知智能理论技术突破与产业应用发展。大会议程将包括讲习班、大会特邀报告、前沿趋势论坛、工业界论坛、青年学者论坛、评测与竞赛、论文报告、海报与系统展示等环节,邀请国内外知名学者介绍相关领域的最新进展和发展趋势,邀请产业界知名研发人员分享实战经验,促进产学研合作。北京、成都、天津、杭州、南昌、广州(线上)、秦皇岛、沈阳、重庆、福州举办。可解释性、知识记忆机制、知识记忆增强等;

2026-02-02 20:12:40 57

原创 <span class=“js_title_inner“>论文浅尝 | KGMEL:融合知识图谱的增强型多模态实体链接(SIGIR2025)</span>

然而,现有的MEL方法大多忽略了知识图谱(Knowledge Graph, KG)中的三元组(triples)信息,这些三元组提供了丰富的结构化上下文,能进一步桥接提及与实体间的语义差距。对于生成的三元组,它首先使用CLIP编码每个三元组的关系和尾实体,然后通过一个双重交叉注意力机制来计算每个三元组与文本、图像的相对重要性得分,最后通过加权求和将所有三元组信息聚合成一个单一的向量。在知识库中,实体拥有丰富的文本、图像和结构化三元组信息,而提及本身只有文本和图像,缺乏可供直接比较的三元组。

2026-01-30 19:40:48 329

原创 论文浅尝 | KGMEL:融合知识图谱的增强型多模态实体链接(SIGIR2025)

然而,现有的MEL方法大多忽略了知识图谱(Knowledge Graph, KG)中的三元组(triples)信息,这些三元组提供了丰富的结构化上下文,能进一步桥接提及与实体间的语义差距。对于生成的三元组,它首先使用CLIP编码每个三元组的关系和尾实体,然后通过一个双重交叉注意力机制来计算每个三元组与文本、图像的相对重要性得分,最后通过加权求和将所有三元组信息聚合成一个单一的向量。在知识库中,实体拥有丰富的文本、图像和结构化三元组信息,而提及本身只有文本和图像,缺乏可供直接比较的三元组。

2026-01-30 19:40:48 380

转载 征稿 | 第25届国际语义网大会(ISWC 2026)征稿通知

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。的主要征稿内容,请访问会议网站获取具体投稿说明和会议其它信息!)是知识图谱(语义网)领域的重要国际会议(,进入 OpenKG 网站。),欢迎大家投稿和参会!月于意大利巴里召开第。25届会议,投稿截止。

2026-01-29 11:00:56 35

转载 直播预告 | OpenKG年度论坛:知识增强大模型新发展(2025)

他的研究主要涉及到机器学习、自然语言处理、知识图谱和AI for Science等方向,在Nature Machine Intelligence、Nature Biotechnology、Nature Computational Science、NeurIPS、ICML、ICLR、AAAI、WWW、ACL等人工智能顶级学术会议和SCI期刊发表六十余篇文章。在ACL、EMNLP、COLING、全国信息检索大会等重要国际国内会议多次担任程序委员会主席、领域主席、讲习班主席等。

2026-01-26 10:04:51 66

转载 技术动态 | 时空知识图谱模型设计总结及Step-GUI操作轨迹训练数据合成思路

通过“自动化验证脚本”或“人工快速判断”,对每条原始轨迹进行“二元标注”,要么“任务成功”(如订单确实提交),要么“任务失败”(如停留在错误界面),若模型生成的“订奶茶”轨迹最终显示“订单提交成功”,则校准为“成功轨迹”,若轨迹卡在“支付页面闪退”,则校准为“失败轨迹”;每条轨迹包含连续的界面截图、模型预测的操作(如点击坐标、滑动方向)、以及模型的初步推理(如“因为要选规格,所以点击‘规格’按钮”),但是部分能成功完成任务(成功轨迹),部分会因操作错误失败(失败轨迹)

2026-01-23 19:40:15 44

转载 <span class=“js_title_inner“>技术动态 | 时空知识图谱模型设计总结及Step-GUI操作轨迹训练数据合成思路</span>

通过“自动化验证脚本”或“人工快速判断”,对每条原始轨迹进行“二元标注”,要么“任务成功”(如订单确实提交),要么“任务失败”(如停留在错误界面),若模型生成的“订奶茶”轨迹最终显示“订单提交成功”,则校准为“成功轨迹”,若轨迹卡在“支付页面闪退”,则校准为“失败轨迹”;每条轨迹包含连续的界面截图、模型预测的操作(如点击坐标、滑动方向)、以及模型的初步推理(如“因为要选规格,所以点击‘规格’按钮”),但是部分能成功完成任务(成功轨迹),部分会因操作错误失败(失败轨迹)

2026-01-23 19:40:15 19

转载 技术动态 | 多模态知识图谱在食品领域大模型问答升级的革命性作用

转载公众号 | 知识图谱科技我们提出了一个统一的食品领域问答框架,结合了大规模的多模态知识图谱(MMKG)和生成式人工智能。我们的MMKG链接了13,000个食谱、3,000种食材、140,000条关系以及14,000张图片。我们使用40个模板和LLaVA/DeepSeek增强技术生成了40,000对问答。通过联合微调Meta LLaMA 3.1-8B和Stable Diffusion 3.5-Large,将BERT分数提高了16.2%,将FID降低了37.8%,并将CLIP对齐度提升了31.1%。诊断性分

2026-01-21 19:40:17 53

转载 <span class=“js_title_inner“>技术动态 | 多模态知识图谱在食品领域大模型问答升级的革命性作用</span>

我们的工作介绍了一个整合了文本、营养和图像的食品领域多模态知识图谱(MMKG),用于评估问答多样性。示例包括WordNet(Miller,1994)、BabelNet(Navigli和Ponzetto,2010)、Freebase(Bollacker等人,2008)、DBpedia(Auer等人,2007)、YAGO(Suchanek等人,2007)、Wikidata(Vrandecic和Krotzsch,2014)、CN-DBpedia(Xu等人,2017)和Probase(Wu等人,2012)。

2026-01-21 19:40:17 22

转载 论文浅尝 | 利用知识图谱-RAG和符号验证对复杂任务进行分层规划(ICML2025)

此外,现有方法缺乏对计划的形式化验证和实时故障检测能力,这限制了它们在真实世界机器人应用中的实用性。每个宏动作被进一步扩展为原子动作序列(例如,“定位到酒瓶、拿起、倾倒”),形成可执行的扩展计划。)构建可重用的宏动作库:通过记录成功执行的宏动作和原子动作,构建可共享和重用的知识库,支持跨代理的知识迁移和计划复用,减少重复生成计划的开销。提供了计划生成和纠正的透明流程,使用户能够理解和控制规划过程,增强了系统的可信度和适应性。能够将复杂任务分解为可管理的子任务(宏动作),并进一步扩展为可执行的原子动作序列。

2026-01-19 19:40:55 48

转载 技术动态 | 打破学科壁垒,400篇参考文献重磅综述,统一调查「人脑×Agent」记忆系统

传统的 RAG 侧重于将 LLM 连接到静态的知识库进行查询,而 Agent Memory 是嵌入在 Agent 与其环境之间的动态交互过程中,不断地将 Agent 操作和环境反馈生成的信息合并到记忆容器中。当前的记忆系统主要是为文本形式设计的。训练好一个专为写代码的 Agent,它的经验(记忆)很难直接传给另一个专为数学的 Agent,这导致了严重的重复造轮子。在认知神经科学中,记忆构成了大脑编码、存储和检索信息的神经过程,使个体能够保留过去的经验并利用它们来指导正在进行的行为并为未来的决策提供信息。

2026-01-16 19:40:48 56

转载 <span class=“js_title_inner“>技术动态 | 打破学科壁垒,400篇参考文献重磅综述,统一调查「人脑×Agent」记忆系统</span>

传统的 RAG 侧重于将 LLM 连接到静态的知识库进行查询,而 Agent Memory 是嵌入在 Agent 与其环境之间的动态交互过程中,不断地将 Agent 操作和环境反馈生成的信息合并到记忆容器中。当前的记忆系统主要是为文本形式设计的。训练好一个专为写代码的 Agent,它的经验(记忆)很难直接传给另一个专为数学的 Agent,这导致了严重的重复造轮子。在认知神经科学中,记忆构成了大脑编码、存储和检索信息的神经过程,使个体能够保留过去的经验并利用它们来指导正在进行的行为并为未来的决策提供信息。

2026-01-16 19:40:48 26

转载 技术动态|强化学习增强大语言模型推理能力

两者取长补短的直观结合方式即是常见的SFT-then-RL范式,即先用一定的高质量数据进行SFT,对模型参数进行冷启动,再通过RL的方式对SFT对应的范式进行拓展,提升模型的泛化性。该框架发现通过多轮协作能够实现更高质量的推理,并能够缓解单智能体推理时出现的幻觉问题,实验证明,经过协作训练的模型在多轮交互推理任务中显著优于未经训练的模型,同时该训练框架并未增强任务本身的知识,而是提升了模型有效协作的能力。过长的思维链不仅造成资源消耗增加,还可能引入无关甚至误导性的中间推理,进而偏离原本正确的推理轨迹。

2026-01-14 19:41:00 85

转载 技术动态 | HypoChainer:结合大模型与知识图谱的协作系统,革新生物医学科学发现

(2)假设构建:专家迭代地探索与预测和假设对齐的实体相关的KG信息,在通过LLMs的建议精炼假设的同时获得知识和见解;13 扩展检索结果。4)最终,系统会根据假设链的匹配程度和KG支持的证据对预测进行排序,识别出高优先级的验证候选者。未来工作包括通过更稳健的方法增强文本-KG集成,并通过更自动化的工作流程加速知识发现,同时保留关键的人类监督以确保科学严谨性和可操作的见解。:包括通过更稳健的方法增强文本-KG集成,通过更自动化的工作流程加速知识发现,同时保留关键的人类监督以确保科学严谨性和可操作的见解。

2026-01-12 19:40:52 51

原创 论文浅尝 | 图上生成:将大语言模型视为智能体与知识图谱以解决不完整知识图谱问答(EMNLP2024)

推理框架,该框架允许模型在推理的每一步动态地评估当前信息状态,并灵活决定是利用外部图谱的结构化知识,还是激活内部参数化记忆来生成缺失的链路。这个想法的作用至关重要,它负责对原始的复杂问题进行分解,规划出当前需要解决的子问题,或者评估现有的观测信息是否已经足以推导出最终答案。在该框架下,模型不仅作为代理在图谱上探索,当遇到路径缺失时,还能作为知识库生成新的事实三元组,从而动态地填补图谱的空白。)提供了重要的启示:真正的智能体不应只是工具的使用者,更应该是知识的创造者和补全者。视为在环境中交互的代理。

2026-01-09 19:40:39 685

转载 技术动态 | RAG中的图谱构建误区及语音、推理加速方向技术进展

包括:MiMo-Audio-7B-Base、指令微调模型MiMo-Audio-7B-Instruct,MiMo-Audio-7B-Instruct可通过提示词切换非思考、思考两种模式,预训练数据超1亿小时,https://huggingface.co/XiaomiMiMo,技术报告:https://github.com/XiaomiMiMo/MiMo-Audio/blob/main/MiMo-Audio-Technical-Report.pdf。事件知识图谱抽取,是一个很正规的事情,与rag无关的。

2026-01-07 19:41:07 44

转载 技术动态 | DrKGC:突破传统知识图谱补全,动态子图检索与大模型的创新融合

然后,它利用一种新颖的自下而上的图检索方法,根据学到的规则提取每个查询的子图。候选集大小固定为20。:该问题的研究相关工作有基于结构的方法(如TransE、DistMult)、基于规则的方法(如Neural-LP)、基于文本的方法(如KG-BERT)以及生成式方法(如KICGPT、KoPA)。:选择了多类别的基线方法进行比较,包括基于结构的方法(如TransE、DistMult)、基于规则的方法(如Neural-LP)、基于文本的方法(如KG-BERT)以及生成式方法(如KICGPT、COSIGN)。

2026-01-04 19:40:55 72

转载 OpenKG祝大家2026新年快乐!

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。2026,知识开启新序章!OpenKG团队向每一位知识探索者送上新年祝福。”为网,在数据的宇宙中共同绘制更璀璨的星辰大海。祝您探索不止,灵感常新,2026年新年快乐!新的一年,让我们继续携手,以“,进入 OpenKG 网站。

2026-01-01 08:50:25 75

转载 技术动态 | 大模型外部知识增强的进阶之路:从推理时文本融合到统一多模态检索增强

针对文本知识的融合痛点,我们首先介绍KGA(Knowledge Graph-guided Attention,知识图谱引导注意力机制),这是一种无需训练、在推理时即可将外部知识图谱动态融合进大语言模型的全新框架。实验表明,KGA不仅在知识问答、知识推理和知识编辑等任务上显著优于现有的上下文学习(ICL)和微调方法,还能通过减少不必要的token之间的交互来提升融合效率,为大模型在动态变化的环境中的落地应用提供了轻量级、高可用的解决方案。在多模态问答(MMQA)中,模型不仅要处理文本,还要理解图像。

2025-12-30 19:40:50 123

转载 直播预告 | OpenKG青年学术沙龙:“知识提取与融合技术前沿进展与创新应用”

其次,在记忆抽取阶段,我们构建了面向日常生活场景的个人知识schema,设计了基于种子数据的数据集构建策略,并提出了任务自适应的知识抽取方法,实现了从非结构化用户数据中高效提取个性化知识。实验表明,KGA不仅在知识问答、知识推理和知识编辑等任务上显著优于现有的上下文学习(ICL)和微调方法,还能通过减少不必要的token之间的交互来提升融合效率,为大模型在动态变化的环境中的落地应用提供了轻量级、高可用的解决方案。该工作以“元素-官能团-分子-反应-实验”为主线,构建覆盖化学反应全过程的统一知识表达框架。

2025-12-28 09:58:45 86

原创 论文浅尝 | G2S:一个用于大语言模型的时间知识图预测的通用到具体的学习框架(ACL2025)

输入格式为 “历史事实 + 查询”,历史事实按 “A (t):[A (s), A (r), A (o)]” 组织,查询按 “0:[A (s), A (r),?]” 组织,输出为正确答案的匿名 ID;, r, o, t);实体 / 关系 ID:提供三种策略 —— 频率 ID(FID,按频率排序)、全局 ID(GID,数据集原始 ID)、随机 ID(RID,随机分配);:保留实体 / 关系与匿名 ID 的映射关系,在输入开头添加 “实体映射”(A (e): e)和 “关系映射”(A (r): r)模块;

2025-12-25 19:40:16 597

转载 直播预告 | OpenKG学术研讨会报告:“知识提取与融合技术前沿进展与创新应用”

其次,在记忆抽取阶段,我们构建了面向日常生活场景的个人知识schema,设计了基于种子数据的数据集构建策略,并提出了任务自适应的知识抽取方法,实现了从非结构化用户数据中高效提取个性化知识。实验表明,KGA不仅在知识问答、知识推理和知识编辑等任务上显著优于现有的上下文学习(ICL)和微调方法,还能通过减少不必要的token之间的交互来提升融合效率,为大模型在动态变化的环境中的落地应用提供了轻量级、高可用的解决方案。该工作以“元素-官能团-分子-反应-实验”为主线,构建覆盖化学反应全过程的统一知识表达框架。

2025-12-23 16:34:02 86

转载 新闻动态 | 王昊奋:从虚拟偶像到OpenKG,以“顶天立地”践行AI技术的落地探索

随着社区发展,“OpenKG逐渐从开源数据扩展至开源工具、模型、经典案例、最佳实践乃至整体解决方案,致力于推动知识图谱的构建与应用,探索其如何与其他AI组件,包括当前的大模型技术,协同融合,起到了积极的推动作用。

2025-12-22 15:21:35 86

转载 技术动态 | 大模型构建知识图谱:VCPedia与Fractal KG的实战经验

本文基于VCPedia与Fractal KG的实战案例,详细分析了从数据抽取、实体解析、自动化建模到生产级运维的每一个决策点,并对相关技术要点和最佳实践做出梳理。本文深度解析了知识图谱在实际项目(如VCPedia和Fractal KG)中的构建经验,包括图谱自动化、实体消歧、属性与节点设计、文档分粒存储、跨域建模等多方面内容,并结合FalkorDB的例子给出了系统化实践建议。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

2025-12-19 19:40:42 81

转载 GPT-5.2并非全面升级,OneEval V1.3 最新“LLM+KB”评测结果出炉

在通用领域英文表格推理任务中,DeepSeek-V3.2-Thinking、Qwen3-Max、Hunyuan-2.0-Thinking 与 GPT-5.2-Thinking 能够准确识别德国选手身份,并在跨项目、多类别的复杂表格中完成稳定计数,整体推理结果与标准答案一致;人民法院准许参加诉讼的,列为共同原告。(2)《民诉解释》第289条:公益诉讼案件的裁判发生法律效力后,其他依法具有原告资格的机关和有关组织就同一侵权行为另行提起公益诉讼的,人民法院裁定不予受理,但法律、司法解释另有规定的除外。

2025-12-17 12:58:24 121

原创 论文浅尝 | 大语言模型在带超关系的知识图谱上的推理(ICLR2025)

通过实现多关系路径的同时表示和探索,ReKnoS 显著扩展了KG的推理搜索空间,同时避免了有价值信息的丢失。大量实验证明,ReKnoS 的性能超越了现有的SOTA基线,展示了超关系在推进复杂KG推理任务方面的潜力。当 N 从 3 降到 1 时,性能显著下降(例如 L=3 时,Hits@1 从 81.1% 降至 76.2%),表明 N(即搜索宽度)对框架性能至关重要。而 ReKnoS 在每一步中,LLM 评估的超关系数量最多为 N(即候选集大小),与深度无关,显著减少了LLM的调用次数。

2025-12-15 19:41:09 1167

转载 新闻动态 | 东南大学漆桂林教授担任SCI期刊《Knowledge Engineering Review》主编

工程及人工智能驱动的的数据和软件工程研究。专注于发表本领域的原创研究、综述、调研型综述、系统性论文、分析性论文、教程论文以及社论。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。漆桂林教授,东南大学计算机科学与工程学院。虚假评论检测的最新进展:一项综合性综述。信息扩散分析:过程、模型、部署及应用。增量数据集中的高效用项集挖掘:综述。广告点击率预测算法的综合性综述。)的英文学术期刊,致力于传播。,进入 OpenKG 网站。

2025-12-12 16:41:55 91

原创 DeepSeek-V3.2、Gemini 3-Pro谁更会用知识库?OneEval V1.2公布最新LLM+KB评测结果

OpenKG 现正式发布全面升级的 OneEval V1.2。新版本在评测的广度和深度上均实现了显著扩展: 1)模型更广:纳入了7个最新模型,评测范围已经涵盖41个LLM。 2)数据更深:新增了经济,税务、学术文献领域高质量数据集。OneEval V1.2 致力于更全面、及时地追踪大模型在知识增强领域的前沿能力,为行业发展提供更具时效性与参考价值的评测基准。OneEval V1.2整体评测框架如图1所示。图1 OneEval评测框架示意图OneEval 由 OpenKG SIGEval 工作组持续维护,评测

2025-12-10 10:18:40 956

转载 技术动态 | 多模态GraphRAG的图谱构建及文档OCR多模态大模型可用合成数据集

基于IDEFICS3 架构,VIT采用siglip2-base-patch16-512(https://huggingface.co/google/siglip2-base-patch16-512)与 Granite 165M LLM,https://huggingface.co/ibm-granite/granite-docling-258M,https://docling-project.github.io/docling/3,实例层KG(InstanceKG)构建。转载公众号 | 老刘说NLP。

2025-12-08 19:40:21 105

转载 技术动态 | AutoGraph:一种知识图谱框架,用于在数字化核控制室中模拟界面交互和自动化程序执行

然而,现有的基于计算机的程序(CBPs)通常缺乏与人类系统界面(HSIs)的语义集成,限制了它们支持智能自动化的能力,并增加了人为错误的风险,特别是在动态或复杂的操作条件下。例如,在实验中,AutoGraph识别了任务“检查参数0KBE10CP007的值”的多动作步骤,并利用ACT-R模型预测了任务完成时间为37.107秒,计算的人为错误概率为8.2×10^-3。:然后,开发了一种映射机制,将程序步骤转换为界面元素知识图谱(IE-KG)内的可执行路径,从而识别复杂的多动作步骤。

2025-12-05 19:40:42 75

原创 论文浅尝 | 一种用于时态知识图谱推理的生成式自适应重放持续学习模型(ACL2025)

前者通过预训练扩散模型生成历史分布并强化跨分布共性特征,后者以分层自适应融合方式整合历史与当前分布,高效缓解分布冲突。编码器架构,通过前向扩散(向实体嵌入添加高斯噪声)与反向去噪(从噪声中重构实体分布)预训练,具备从提示中复现知识的能力。,以包含实体关联关系与时序信息的提示作为重放数据采样单元,保障历史语义完整性,突破传统单事实采样的局限性。突破传统单事实采样的局限性,保留实体完整历史语义,为后续历史分布生成提供高质量输入。,通过整合完整历史上下文与缓解分布冲突,有效解决知识遗忘问题,为动态场景下的。

2025-12-03 19:40:25 1003

转载 技术动态 | 知识图谱用于复杂推理数据合成DeepDive、GDR清洗敏感信息及领域知识注入实现思路

,https://arxiv.org/pdf/2509.10446, https://github.com/THUDM/DeepDive,核心思路还是解决复杂推理监督数据【现有QA数据集(如HotpotQA、2WikiMultiHopQA)问题简单,仅需少量明确实体搜索,模拟真实场景中“多模糊实体+多跳推理”的深度搜索需求差,且人工标注高难度数据成本高、难规模化】。,通过全量或部分微调,将知识嵌入模型参数,训练获取编码领域知识的参数,推理时无需外部调用,优势在于推理速度快,无额外成本,性能较强。

2025-12-01 19:40:52 112

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除