论文浅尝 | Graph2Feat:基于知识蒸馏的归纳链接预测

本文提出Graph2Feat框架,通过知识蒸馏将GNN教师模型的归纳能力转移给MLP学生模型,以解决链路预测任务中的推理延迟问题。实验表明,Graph2Feat在同构和异构图上表现出与SOTA方法相当甚至更优的性能,同时显著加速推理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dccf0e7edbd6f4a57689f812071bf417.png

笔记整理:刘治强,浙江大学硕士生

链接:https://dl.acm.org/doi/10.1145/3543873.3587596

1. 动机

尽管GNN在链路预测任务中表现出较高的准确性,但它并不是设计用于归纳设置下的链路预测。此外,由于对图数据的依赖性,GNN在大规模工业部署中显示出相当高的推理延迟

尽管由于缺乏对图拓扑的访问,MLP在节点分类任务上的归纳偏差比GNN小得多,但由于其低推理延迟,它们在工业规模应用程序中获得了很高的欢迎。先前的观察结果使得最近的研究人员在节点分类任务中利用从教师GNN到学生MLP的跨模型知识蒸馏。

鉴于在链接预测,特别是归纳链接预测方面的知识蒸馏仍是一个未被探索的领域,本文致力于在转导链接预测和归纳链接预测任务中加速推理。此外,由于链路预测可能涉及对源节点和多个上下文节点类型之间的多种关系进行推理。

2. 方法

提出的框架:Graph2Feat

  • 知识蒸馏:将知识从繁重的教师模型提炼为更轻量级的学生模型。

0761827f9e8fdebb117b78946db3ff42.png

本文从教师GNN模型生成软预测  ,然后通过最小化损失函数  训练学生模型MLP去匹配对应的软预测  。最终得到的学生模型的损失函数为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值