笔记整理:陈少凯,浙江大学硕士生,研究方向为知识图谱、RAG
论文链接:https://arxiv.org/pdf/2405.14831
发表会议:Neurips 2024
1. 动机
虽然近年来大语言模型(LLM)的研究取得了很大进展,但持续更新的长时记忆在当前的人工智能系统中仍然有明显缺陷。检索增强生成(RAG)已经成为LLMs长时记忆的解决方案,然而,当前的RAG方法仍不能帮助LLM执行需要跨段落边界集成新知识的任务,因为每个新段落都是孤立编码的。
许多重要的现实世界任务,例如科学文献综述、医学诊断等任务,需要跨段落或文档的知识集成。为了解决此类任务,当前的RAG系统采取迭代地使用多个检索和LLM生成步骤来连接不同的段落。相比之下,人脑能够相对轻松地解决这些具有挑战性的知识整合任务。
2. 贡献
本文的核心贡献主要如下:
(1)首先,提出了一种RAG框架HippoRAG,通过模仿人类记忆来作为LLM的长期记忆。
(2)其次,HippoRAG协同LLM、知识图谱和个性化Page