论文浅尝 | Zero-Shot Transfer Learning for Event Extraction

本文探讨了在事件抽取任务中使用零样本迁移学习的方法,通过将事件mention和event ontology映射到共享语义空间,实现无样本事件类型的模型迁移。实验表明,在考虑更多结构信息的情况下,这种方法能有效提升事件抽取的性能,尤其是在测试类与训练类相似度高时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640?wx_fmt=png

事件抽取的目标是在非结构化的文本中确认事件的触发词(Eventtrigger)和参与者(Event argument),并判断触法词的事件类型(Eventtype),判断参与者在事件中的扮演的角色(Argument role)。有触发词和参与者的短语或文本称为EventMention。如下图的关于Transport-Person 事件的一条EventMention,dispatching是触发词,下划线是参与者,其中China作为Agent参与事件。

640?wx_fmt=png

目前大多数的事件抽取是基于已有的手动标记样本进行训练。常见的数据集ACE,总共有8个大类,33个小类,对每个类,有人为标记的训练语料。但是对于没有样本的新事件类型,用上述语料训练的模型会显得无力。对此,一是可以用远程监督的方法标记训练样本,二是用迁移学习方法。本文基于第二点的,提出在事件抽取任务中用零样本迁移学习方法:event mention 和event ontology联合映射到共享的语义空间上,拉近两者在语义空间上的距离。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值