题目链接
https://vjudge.net/problem/CodeForces-1443D/origin
题意
每一次可以对前缀或后缀减少小于等于n的值,问是否可以变为全0。
思路
首先明确,由于可以多次操作,所以减的值其实是没有小于等于n的限制的,可以当成若干次减少1操作。
看到区间操作,考虑差分,当元素全为0时,其差分数组也是全为0,我们考虑两种操作对于差分数组的影响,假设第一种操作到i为止,第二种操作从i开始,那么第一种操作后:diff[1]-1,diff[i+1]+1,第二种操作后:diff[i]-1,diff[n+1]+1。
如果我们能通过若干次操作将差分数组化成全0即可,那么对于2-n所有的负数,我们执行操作一,最终diff[1]会减少所有负数绝对值的值,如果这时diff[1]仍不为负,那么就是可以实现;反过来依旧成立,我们可以统计所有正数的值,如果正数值的和比diff[n+1]的绝对值要小,同样也可以实现。
不用担心说判定了负数后还要在判定一下正数,加入判定负数那一部分可以完成,那么diff数组中除了最后一项剩下的全是正数,其代表的是一段不下降序列,是一定可以用后缀减法化成0的。
教训/收获
- 算法假了要敢于推倒重来,不要死钻牛角尖
- 差分/前缀和不仅用于降低复杂度,其性质同样是很多题目的考点,比如这道题和之前多校3的某道题就考察了前缀和的性质。
代码
//这里用的是判断正数的方法
#include<cstdio>
#include<iostream>
#include<iomanip>
#include<map>
#include<unordered_map>
#include<string>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl "\n"
//#define int long long
//#define double long double
using namespace std;
typedef long long ll;
const int maxn=30500;
const int inf=0x3f3f3f3f;
int n,m;
int a[maxn];
int diff[maxn];
int main(){
IOS
int tn;
cin>>tn;
while(tn--){
bool ans=1;
cin>>n;
int ma=-inf;
for(int i=1;i<=n;i++)
cin>>a[i],diff[i]=a[i]-a[i-1];
diff[n+1]=-a[n];
int sm=0;
for(int i=2;i<=n;i++)
if(diff[i]>0) sm+=diff[i];
if(sm>-diff[n+1])
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
}
}