莫比乌斯函数(Mobius)的求法 每日一遍,算法再见!

博客介绍了莫比乌斯函数的概念及其性质,重点讲解了如何使用欧拉筛法来高效计算莫比乌斯函数。代码示例展示了如何初始化一个数组mu,通过遍历并标记素数及其倍数,根据莫比乌斯函数的规则更新数组值,从而得到所有整数的莫比乌斯函数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

莫比乌斯函数

我们用符号u表示莫比乌斯函数,u(x)表示x的莫比乌斯函数
①x=1,u(1)=1.
②x=p1p2p3p4…pk,其中p1~pk是x的素数因子,u(x)= ( − 1 ) k (-1)^k (1)k
③其他情况u(x)=0

②和③的情况通俗的讲,就是把x用素数乘积的形式表示,如果存在一个素数的指数大于1那么u(x)=0,否则u(x)= ( − 1 ) k (-1)^k (1)k.

欧拉筛求Mobius函数
代码:

void get_mu()
{
	memset(vis,false,sizeof(vis));
	mu[1]=1;
	vis[1]=true;
	for(int i=2;i<=Maxn;i++)
	{
	    if(!vis[i])
	    {
	    	prime[++prime[0]]=i;
	    	vis[i]=true;
	    	mu[i]=-1;
		}
		for(int j=1;j<=prime[0]&&i*prime[j]<=Maxn;j++)
		{
			vis[i*prime[j]]=true;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			else
			{
				mu[i*prime[j]]=-mu[i];
			}
		}
	}
	return ;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值