题目
「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。前五项如下:
1
11
21
1211
111221
1 被读作 “one 1” (“一个一”) , 即 11。
11 被读作 “two 1s” (“两个一”), 即 21。
21 被读作 “one 2”, “one 1” (“一个二” , “一个一”) , 即 1211。
给定一个正整数 n(1 ≤ n ≤ 30),输出外观数列的第 n 项。
注意:整数序列中的每一项将表示为一个字符串。
示例 1:
输入: 1
输出: “1”
解释:这是一个基本样例。
示例 2:
输入: 4
输出: “1211”
解释:当 n = 3 时,序列是 “21”,其中我们有 “2” 和 “1” 两组,“2” 可以读作 “12”,也就是出现频次 = 1 而 值 = 2;类似 “1” 可以读作 “11”。所以答案是 “12” 和 “11” 组合在一起,也就是 “1211”。
解答:
这是LetCode中一道关于字符串的题。我们可以知道它的每一个新的字符串都依赖于前一个字符串的值,那么它的解答思想有两种,一种是递归,一种是迭代。
[1] 递归解答
class Solution {
public String countAndSay(int n) {
if( n == 1) {
return "1";
}
int cur = 1;
int p1 = 0;
StringBuilder s = new StringBuilder();
//递归遍历得到上一个值(后一个值的解答依赖上一个值==>递归)
String str = countAndSay(n-1);
for(cur = 1; cur < str.length(); cur++) {
if(str.charAt(p1)!=str.charAt(cur)) { //如果后一位和前一位的值不等,则改变
int count = cur - p1;
s.append(count).append(str.charAt(p1));
p1 = cur;
}
}
//把末尾的值补上(这里分为两种情况,一种是只有一个末尾数字,一种是有多个相等的数字)
int count = cur - p1;
s.append(count).append(str.charAt(p1));
return s.toString();
}
}
[2] 迭代解答
class Solution {
public String countAndSay(int n) {
String str = "1";
//迭代的次数(n为2才需要迭代)
for (int i = 2; i <= n; i++) {
StringBuilder s = new StringBuilder();
//迭代时,前一位的值
char pre = str.charAt(0);
//重复数字的个数
int count = 1;
for(int j = 1; j < str.length(); j++) {
//如果前一位和当前的值相等,则重复数字的计数+1
if(str.charAt(j) == pre) {
count ++;
}else {
s.append(count).append(pre);
pre = str.charAt(j);
//计数器复位
count = 1;
}
}
//循环结束后,把后面的数字位补齐
s.append(count).append(pre);
str = s.toString();
}
return str;
}
}