降维算法 t-SNE和UMAP的python实现

from sklearn import manifold

# t-SNE 倾向于保存局部特征,训练较慢
    for i in range(listLength):
        my_value[i] = np.array(my_value[i]).reshape(-1, 64)
        tsne = manifold.TSNE(n_components=2, init='pca', random_state=501)
        X_tsne = tsne.fit_transform(my_value[i])
        x_min, x_max = X_tsne.min(0), X_tsne.max(0)
        X_norm = (X_tsne - x_min) / (x_max - x_min)  # 归一化
        data[i] = X_norm

t-SNE的参数:

n_components:int,可选(默认值:2)嵌入式空间的维度。

init:字符串,可选(默认值:“random”)嵌入的初始化。可能的选项是“随机”和“pca”。 PCA初始化不能用于预先计算的距离,并且通常比随机初始化更全局稳定。

random_state:int或RandomState实例或None(默认)

 

import umap 

# umap 一致的流形逼近和投影以进行降维,类似但优于t-SNE,可用于可视化,但也可用于一般的非线性降维。
    for i in range(listLength):
        my_value[i] = np.array(my_value[i]).reshape(-1, 64)
        reducer = umap.UMAP(random_state=42)  # 使用umap降至二维
        embedding = reducer.transform(my_value[i])
        data[i] = embedding

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值