一、引言
Neo4j 是当前较为主流和先进的原生图数据库之一,提供原生的图数据存储、检索和处理。它由 Neo Technology支持,从 2003 年开始开发,1.0 版本发布于 2010 年,2.0版本发布于 2013 年。经过十多年的发展,Neo4j 获得越来越高的关注度,它已经从一个 Java 领域内的图数据库逐渐发展成为适应多语言多框架的图数据库。Neo4j 支持ACID、集群、备份和故障转移,具有较高的可用性和稳定性;它具备非常好的直观性,通过图形化的界面表示节点和关系;同时它具备较高的可扩展性,能够承载上亿的节点、关系和属性,通过 REST 接口或者面向对象的 JAVA API进行访问。
二、Neo4j简介
(1)基本概念
Neo4j使用图相关的概念来描述数据模型,把数据保存为图中的节点以及节点之间的关系。数据主要由三部分构成:
- 节点。节点表示对象实例,每个节点有唯一的ID区别其它节点,节点带有属性;
- 关系。就是图里面的边,连接两个节点,另外这里的关系是有向的并带有属性;
- 属性。key-value对,存在于节点和关系中,如图1所示。
(2)索引
-
动机:Neo4j使用遍历操作进行查询。为了加速查询,Neo4j会建立索引,并根据索引找到遍历用的起始节点;
-
介绍:默认情况下,相关的索引是由Apache Lucene提供的。但也能使用其他索引实现来提供。
-
操作:用户可以创建任意数量的命名索引。每个索引控制节点或者关系,而每个索引都通过key/value/object三个参数来工作。其中object要么是一个节点,要么是一个关系,取决于索引类型。另外,Neo4j中有关于节点(关系)的索引,系统通过索引实现从属性到节点(关系)的映射。
-
作用:
- 查找操作:系统通过设定访问条件比如,遍历的方向,使用深度优先或广度优先算法等条件对图进行遍历,从一个节点沿着关系到其他节点;
- 删除操作:Neo4j可以快速的插入删除节点和关系,并更新节点和关系中的属性。
(3)Neo4j的优势
- 查询的高性能
- 设计的灵活性
- 开发的敏捷行
- 与其他数据库的比较
- 综合表现
- 闪电般的读/写速度,无与伦比的高性能表现;
- 非结构化数据存储方式,在数据库设计上具有很大的灵活性;
- 能很好地适应需求变化,并适合使用敏捷开发方法;
- 很容易使用,可以用嵌入式、服务器模式、分布式模式等方式来使用数据库;
- 使用简单框图就可以设计数据模型,方便建模;
- 图数据的结构特点可以提供更多更优秀的算法设计;
- 完全支持ACID完整的事务管理特性;
- 提供分布式高可用模式,可以支持大规模的数据增长;
- 数据库安全可靠,可以实时备份数据,很方便恢复数据;
- 图的数据结构直观而形象地表现了现实世界的应用场景。
三、主体类MedicalGraph介绍
class MedicalGraph:
def __init__(self):
pass
# 读取文件,获得实体,实体关系
def read_file(self):
psss
# 创建节点
def create_node(self, label, nodes):
pass
# 创建疾病节点的属性
def create_diseases_nodes(self, disease_info):
pass
# 创建知识图谱实体
def create_graphNodes(self):
pass
# 创建实体关系边
def create_graphRels(self):
pass
# 创建实体关系边
def create_relationship(self, start_node, end_node, edges, rel_type, rel_name):
pass
- 读取文件
def read_file(self):
"""
读取文件,获得实体,实体关系
:return:
"""
# cols = ["name", "alias", "part", "age", "infection", "insurance", "department", "checklist", "symptom",
# "complication", "treatment", "drug", "period", "rate", "money"]
# 实体
diseases = [] # 疾病
aliases = [] # 别名
symptoms = [] # 症状
parts = [] # 部位
departments = [] # 科室
complications = [] # 并发症
drugs = [] # 药品
# 疾病的属性:age, infection, insurance, checklist, treatment, period, rate, money
diseases_infos = []
# 关系
disease_to_symptom = [] # 疾病与症状关系
disease_to_alias = [] # 疾病与别名关系
diseases_to_part = [] # 疾病与部位关系
disease_to_department = [] # 疾病与科室关系
disease_to_complication = [] # 疾病与并发症关系
disease_to_drug = [] # 疾病与药品关系
all_data = pd.read_csv(self.data_path, encoding='gb18030').loc[: