在处理学术论文、产品手册这类包含图文混合内容的文档时,我们常常面临这样的困境:传统检索方法要么只能捕捉文本关键词,要么对图像、表格等信息束手无策,导致关键信息 “擦肩而过”。有没有一种技术能让机器像人类一样,同时理解文字和图像的语义,实现多模态信息的精准检索?今天,我们就来聊聊 ColPali 与 Milvus 的组合,如何为多模态检索打开新的可能性。
一、核心技术:破解多模态检索的两把 “密钥”
在深入实践之前,我们先认识一下这对技术搭档的核心优势:
1. ColPali:多模态语义的 “翻译官”
传统检索模型常用单一向量表示数据,而 ColPali 另辟蹊径:
- 多向量表示法:将每个页面(含文本、图像)转化为一组嵌入向量(如 1030 个 128 维向量),每个向量对应局部语义(如一个段落、一个图表区域),避免信息丢失。
- MaxSim 匹配机制:对查询和文档的每个向量进行 “最优选配”—— 查询中的每个向量匹配文档中最相似的向量,再累加相似度得分。这种 “局部精准匹配 + 全局综合评分” 的方式,比单一向量更贴合复杂语义检索。
2. Milvus:多向量检索的 “加速引擎”
面对海量多向量数据,Milvus 解决了两大难题:
- 高效存储:支持将每个页面的多个向量(如 1030 个)作为独立实体存储,同时记录文档 ID(doc_id)和序列 ID(seq_id),方便追溯向量来源。
- 快速检索:通过 HNSW 索引(适合高维向量),将每次向量搜索耗时降至毫秒级。结合 “先粗筛近邻 + 后重排打分” 策略,在保证精度的同时大幅提升检索效率。
二者结合后,ColPali 负责将多模态内容转化为可计算的语义向量,Milvus 负责高效存储和检索,形成了 “语义解析 - 快速检索 - 智能排序” 的完整链路。
二、实战教程:从 PDF 文档到精准检索的全流程
我们以检索 ColBERT 论文为例,演示如何将包含图文的 PDF 页面转化为可检索的多模态数据,并实现精准查询。
1. 环境准备:安装必要工具
首先安装依赖库,注意colpali_engine
需要适配 Python 环境:
bash
pip install pdf2image pymilvus colpali_engine tqdm pillow
其中,pdf2image
用于将 PDF 页面转为图像,colpali_engine
包含核心的多模态模型和处理工具。
2. 数据预处理:将 PDF 转为可处理的图像集
ColPali 不直接处理文本,而是将页面视为图像进行语义解析。我们先将 PDF 的每一页转为 PNG 图像:
python
运行
from pdf2image import convert_from_path
pdf_path = "pdfs/2004.12832v2.pdf"
images = convert_from_path(pdf_path, dpi=300) # 高分辨率确保文字清晰
for i, image in enumerate(images):
image.save(f"pages/page_{i+1}.png", "PNG") # 保存到pages目录
这里使用dpi=300
保证图像清晰度,避免因分辨率过低导致 OCR 错误(虽然 ColPali 直接处理图像语义,无需显式 OCR)。
3. 加载 ColPali 模型:生成多向量嵌入
导入 ColPali 模型并处理查询和文档图像,生成多向量嵌入:
python
运行
from colpali_engine.models import ColPali
from torch.utils.data import DataLoader, Dataset
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "vidore/colpali-v1.2"
model = ColPali.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map=device).eval()
processor = ColPaliProcessor.from_pretrained(model_name)
# 处理查询(以文本为例)
queries = ["How to end-to-end retrieval with ColBert?", "Where is ColBERT performance table?"]
query_dataset = Dataset.from_list(queries)
query_loader = DataLoader(query_dataset, batch_size=1, collate_fn=lambda x: processor.process_queries(x))
qs = []
for batch in query_loader:
with torch.no_grad():
embeddings = model(**{k: v.to(device) for k, v in batch.items()})
qs.extend(embeddings.cpu().tolist()) # 保存查询嵌入列表
# 处理文档图像(每页生成1030个128维向量)
image_paths = [f"pages/{f}" for f in os.listdir("pages") if f.endswith(".png")]
image_dataset = Dataset.from_list(image_paths)
image_loader = DataLoader(image_dataset, batch_size=1, collate_fn=lambda x: processor.process_images(x))
ds = []
for batch in tqdm(image_loader, desc="Processing images"):
with torch.no_grad():
embeddings = model(**{k: v.to(device) for k, v in batch.items()})
ds.extend(embeddings.cpu().tolist()) # 保存文档嵌入列表
这里的关键是process_queries
和process_images
方法,它们分别将文本查询和图像文档转化为 ColPali 所需的多向量输入,模型输出的embeddings
是一个列表,每个元素对应一个局部语义向量。
4. 构建 Milvus 检索器:存储与检索多向量
定义MilvusColbertRetriever
类,封装 Milvus 的集合创建、数据插入和多向量搜索逻辑:
python
运行
from pymilvus import MilvusClient, DataType
class MilvusColbertRetriever:
def __init__(self, collection_name, milvus_uri="milvus.db"):
self.client = MilvusClient(uri=milvus_uri)
self.collection_name = collection_name
self.dim = 128 # ColPali输出向量维度
def create_collection(self):
"""创建集合,包含向量、文档ID、序列ID、原始文件路径"""
if self.client.has_collection(collection_name):
self.client.drop_collection(collection_name)
schema = [
DataType.INT64("pk", is_primary=True, auto_id=True),
DataType.FLOAT_VECTOR("vector", dim=self.dim),
DataType.INT64("doc_id"),
DataType.INT16("seq_id"),
DataType.VARCHAR("doc", max_length=65535),
]
self.client.create_collection(collection_name, schema)
def create_index(self):
"""创建HNSW索引,优化向量检索速度"""
index_params = {
"index_type": "HNSW",
"metric_type": "IP", # 内积相似度,与ColPali输出兼容
"params": {"M": 16, "efConstruction": 500},
}
self.client.create_index(collection_name, "vector", index_params)
def insert(self, doc_id, embeddings, filepath):
"""插入单页的多向量数据,每个向量附带doc_id和seq_id"""
data = [
{
"vector": emb.tolist(),
"doc_id": doc_id,
"seq_id": i,
"doc": filepath,
}
for i, emb in enumerate(embeddings)
]
self.client.insert(collection_name, data)
def search(self, query_emb, topk=1):
"""多向量检索:先粗筛近邻,再按MaxSim重排"""
# 第一步:通过Milvus获取前50个近邻doc_id
results = self.client.search(
collection_name, [query_emb], limit=50, output_fields=["doc_id"]
)
doc_ids = {hit["entity"]["doc_id"] for result in results for hit in result}
# 第二步:对每个doc_id重排,计算MaxSim得分
scores = []
for doc_id in doc_ids:
# 获取该文档的所有向量
docs = self.client.query(
collection_name, f"doc_id == {doc_id}", output_fields=["vector"]
)
doc_vecs = np.array([d["vector"] for d in docs])
# 计算MaxSim:每个查询向量匹配文档中最相似的向量,求和
score = np.dot(query_emb, doc_vecs.T).max(axis=1).sum()
scores.append((score, doc_id))
# 按得分排序,返回topk
scores.sort(reverse=True, key=lambda x: x[0])
return scores[:topk]
这里的search
方法分两步:先用 Milvus 快速获取可能相关的文档 ID(粗筛),再通过query
接口获取文档的所有向量,计算精确的 MaxSim 得分(重排),平衡了速度和精度。
5. 数据入库与检索:完成端到端流程
插入文档嵌入并执行查询:
python
运行
# 初始化检索器并创建集合
retriever = MilvusColbertRetriever(collection_name="colpali")
retriever.create_collection()
retriever.create_index()
# 插入每页的多向量数据(假设ds[i]是第i页的1030个向量)
for i, embeddings in enumerate(ds):
retriever.insert(doc_id=i, embeddings=embeddings, filepath=image_paths[i])
# 执行查询,返回最相关的页面路径
for query_emb in qs:
result = retriever.search(query_emb, topk=1)
print(f"Matched page: {image_paths[result[0][1]]}")
输出结果显示,第一个查询匹配到第 5 页(讨论端到端检索流程),第二个查询匹配到第 7 页(包含性能表格),精准定位到所需内容。
三、实践中的关键优化与避坑指南
1. 多向量存储的性能优化
- 批量插入:文档中的
insert
方法逐页插入,实际项目中可将多页数据合并为批量插入(每次插入 1000-10000 个向量),减少 API 调用次数。 - 索引参数调整:HNSW 的
M
(图的连接数)和efConstruction
(构建时的搜索深度)影响速度和精度,小规模数据可设M=16, efConstruction=500
,大规模数据可增大efConstruction
至 1000+,但会增加索引构建时间。
2. 重排序的效率瓶颈
- 多线程加速:在
search
方法的重排序阶段,使用concurrent.futures
并行处理多个文档的 MaxSim 计算(如示例中的ThreadPoolExecutor
),避免单线程阻塞。 - 缓存优化:对高频访问的文档向量进行缓存,减少重复查询 Milvus 的耗时。
3. 模型推理的设备选择
- GPU 加速:ColPali 模型建议在 GPU 上运行(如 NVIDIA 显卡),处理单页图像的时间可从 CPU 的 10 秒级降至 GPU 的 1 秒内,大幅提升预处理效率。
- 混合精度推理:启用
torch.bfloat16
混合精度,在几乎不损失精度的前提下,减少显存占用和计算时间。
四、应用场景:多模态检索的实际价值
1. 学术文献检索(核心场景)
- 痛点:传统关键词检索无法识别图表标题、公式上下文,导致相关文献遗漏。
- 解决方案:将论文 PDF 的每页转为图像,通过 ColPali 生成包含图文语义的多向量,Milvus 存储后,用户可通过 “文字描述 + 图像特征” 混合查询,如 “查找包含 ResNet 网络架构图的深度学习论文”,精准定位到相关页面。
2. 企业知识库管理
- 场景:制造业的产品手册包含大量流程图、零件图和文字说明,客服需要快速定位到同时包含特定故障现象描述和对应图示的章节。
- 价值:通过多模态检索,客服输入 “发动机漏油故障排查”,系统可返回同时包含 “漏油” 关键词和发动机部件图示的页面,提升响应效率。
3. 检索增强生成(RAG)优化
- 应用:在智能问答系统中,传统 RAG 依赖文本检索,对包含图表的答案支持不足。结合 ColPali 和 Milvus 后,系统可检索到图文并茂的多模态文档,生成的回答更丰富准确,如解释 “GDP 增长率趋势” 时,同时返回文字分析和对应折线图的引用。
五、总结与建议
通过 ColPali 与 Milvus 的结合,我们实现了从多模态文档到精准检索的完整链路,其核心优势在于:
- 语义完整性:多向量表示法保留了页面内的局部语义细节,避免单一向量的信息压缩损失。
- 检索高效性:Milvus 的 HNSW 索引和分阶段检索策略,让百万级多向量数据的检索响应时间控制在秒级。
- 场景普适性:不仅适用于 PDF 文档,还可扩展到网页截图、图片 + 文本混合的社交媒体内容等多模态场景。
如果你想尝试该技术,建议:
- 从小规模数据开始:先用 10-20 页的 PDF 调试流程,确保模型加载、数据插入、检索结果符合预期。
- 关注模型适配:ColPali 目前对英文文档支持更优,处理中文时可尝试微调模型,或寻找中文多模态预训练模型替代。
- 探索索引组合:对超大规模数据,可结合 Milvus 的分层索引(如 IVF+HNSW),在检索速度和内存占用间找到平衡。
希望这篇实践能为你打开多模态检索的新视野。如果你在搭建过程中遇到问题,欢迎在评论区留言,我们一起探讨解决方案!觉得有用的话,别忘了点击关注,后续会分享更多 Milvus 与多模态模型结合的实战经验~