06-图1 列出连通集

/*=====================================================================================
#       COPYRIGHT NOTICE
#       Copyright (c) 2016

#
#       @Author       :Zehao Wang
#       @Email         :zehaowang@163.com
#       @from            :https://pta.patest.cn/pta/test/1342/exam/4/question/22500
#       @Last modified         :2016-12-07
#       @Description    :06-图1 列出连通集     
========================================================================================*/
#include<stdio.h>
#include<stdlib.h>

#define MaxVertexNum 10
int Visited[MaxVertexNum];

typedef struct {
    int Vertices[MaxVertexNum];//顶点表
    int Edges[MaxVertexNum][MaxVertexNum];//邻接矩阵,边表
    int n, e;//顶点数和边数
}MGraph;


typedef struct QNode {
    int Data[MaxVertexNum];
    int front;
    int rear;
}QNode,*Queue;

void Reset_Visited();
int Check_Visited(MGraph*G);

Queue Creat_Queue();
void Add_Queue(Queue Q,int item);
int Delete_Queue(Queue Q);
//int IsEmpty_Queue(Queue Q);

void Creat_MGraph(MGraph*G);
void DFS(MGraph*G, int i);
void BFS(MGraph*G);
int FirstAdjV(MGraph*G, int V);
int NextAdjV(MGraph*G, int V, int W);

Queue Creat_Queue()
{
    Queue Q =(Queue) malloc(sizeof(struct QNode));
    Q->front = -1;
    Q->rear = -1;
    return Q;
}

void Add_Queue(Queue Q,int item)
{
    if ((Q->rear + 1) % MaxVertexNum == Q->front)
    {
        printf("队列满");
        return;
    }
    else
    {
        Q->rear = (Q->rear + 1) % MaxVertexNum;
        Q->Data[Q->rear] = item;
    }
}

int Delete_Queue(Queue Q)
{
    if (Q->rear == Q->front)
    {
        printf("队列空");
        return -1;
    }
    else
    {
        Q->front = (Q->front + 1) % MaxVertexNum;
        return Q->Data[Q->front];
    }
}

int Check_Visited(MGraph *G)//看看是否还存在未被点亮的节点
{
    for (int i = 0; i < G->n; i++)
    {
        if (!Visited[i])
            return 1;
    }
    return 0;
}

void Reset_Visited()
{
    for (int i = 0; i < MaxVertexNum; i++)
        Visited[i] = 0;
}

void Creat_MGraph(MGraph *G)
{
    scanf("%d %d", &(G->n), &(G->e));
    for (int i = 0; i < G->n; i++)
    {
        for (int j = 0; j < G->n; j++)
        {
            G->Edges[i][j] = 0;
        }
    }
    int a;
    int b;
    for (int k = 0; k < G->e; k++)
    {
        scanf("%d %d", &a, &b);
        G->Edges[a][b] = 1;
        G->Edges[b][a] = 1;
    }
}




void DFS(MGraph *G, int i)
{
    Visited[i] = 1;
    printf("%d", i);
    for (int j = 0; j < G->n; j++)
    {
        if (G->Edges[i][j] == 1 && Visited[j] == 0)
            DFS(G, j);
    }
}



void BFS(MGraph *G)
{
    int V;
    int W;
    Queue Q = Creat_Queue();
    for (int i = 0; i < G->n; i++)
    {
        if (!Visited[i])
        {
            printf("{");
            Visited[i] = 1;
            printf("%d", i);
            Add_Queue(Q, i);
            while (Q->front != Q->rear)//当队列不空
            {
                V = Delete_Queue(Q);
                for (W = FirstAdjV(G, V); W < G->n; W = NextAdjV(G, V, W))
                {
                    if (!Visited[W])
                    {
                        Visited[W] = 1;
                        printf("%d", W);
                        Add_Queue(Q, W);
                    }
                    else
                        break;
                }
            }
            printf("}");
            if (Check_Visited(G))
                printf("\n");
        }
    }
}

int FirstAdjV(MGraph *G, int V)//和节点V相邻的第一个节点
{
    for (int i = 0; i < G->n; i++)
    {
        if (G->Edges[V][i] == 1 && Visited[i] == 0)
            return i;
    }
}

int NextAdjV(MGraph *G, int V, int W)//和节点V相邻的第二个节点(第一个节点为W)
{
    for (int i = W; i < G->n; i++)
    {
        if (G->Edges[V][i] == 1 && Visited[i] == 0)
            return i;
    }
}

int main(void)
{
    MGraph *G;
    G = (MGraph*)malloc(sizeof(MGraph));
    for (int i = 0; i < MaxVertexNum; i++)
    {
        Visited[i] = 0;
    }

    Creat_MGraph(G);

    for (int j = 0; j < G->n; j++)
    {
        if (Visited[j] == 0)
        {
            printf("{");
            DFS(G, j);
            printf("}\n");
        }
    }

    Reset_Visited();
    BFS(G);
    return 0;
}

/*============================================================================================
注:这道题考察了图的一些基本操作,包括图的建立以及图的DFS和BFS的实现。图的建立又分两种情况,第
一种为图的邻接矩阵表示,适合稠密的图,本题用的就是这种表示方法。第二种为图的邻接表表示。
图的遍历有两种情况,第一种为深度优先遍历(DFS),它的遍历方式类似于树的先序遍历,用递归实现。第二
为广度优先遍历(BFS),它的遍历方式类似于树的层序遍历,用队列来实现。
==============================================================================================*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值