A^X mod P(简单数论 + 思维打表)

一.题目链接:

A^X mod P

二.题目大意:

给出 T,n, A, K,a, b, m, P.

1 \leq n\leq 10^{6}

0 \leq A, K, a, b \leq 10^{9}

1 \leq m, P \leq 10^{9}

T 组样例.

 f(x) = \left\{\begin{matrix}1\;\;\;x=1 & & & & & & & & \\(a \times f(x - 1) + b)\;(mod\;\;m)\;\;\;x > 1 & & & & & & & & \end{matrix}\right.

求 A^{f(1)}+A^{f(2)}+....+A^{f(n)} \;\;(mod\;\;p).

三.分析:

由于 1 \leq m \leq 10^{9}

所以 1 \leq f(x) \leq 10^{9}

如果用快速幂求和的话会 TLE.

因为 A^{f(x)} = A^{a\times 10^{5} + b}

所以只需要求 sum1[] 和 sum2[].

sum1[i]:A^{i}\;\;(mod\;\;p)

sum2[i]:A^{10^{5}i}\;\;(mod\;\;p)

所以 A^{f(x)} = sum1[i \;mod\;M] \times sum2[i\;/\;M]

详见代码.

四.代码实现:

#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define PI acos(-1.0)
#define ll long long int
using namespace std;

const int M = (int)1e5;
ll n, A, K, a, b, m, p;
ll sum1[M + 5];
ll sum2[M + 5];

void init()
{
    sum1[0] = sum2[0] = 1;
    for(int i = 1; i <= M; ++i)
        sum1[i] = sum1[i - 1] * A % p;
    sum2[1] = sum1[M];
    for(int i = 1; i <= M / 10; ++i)
        sum2[i] = sum2[i - 1] * sum2[1] % p;
}

ll f()
{
    ll fx = K;
    ll sum = 0;
    for(ll i = 1; i <= n; ++i)
    {
        sum = (sum1[fx % M] * sum2[fx / M] % p + sum) % p;
        fx = (a * fx + b) % m;
    }
    return sum % p;
}

int main()
{

    int T;
    scanf("%d", &T);
    for(int ca = 1; ca <= T; ++ca)
    {
        cin >> n >> A >> K >> a >> b >> m >> p;
        init();
        ll ans = f();
        printf("Case #%d: %lld\n", ca, ans);
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值