朴素贝叶斯算法与贝叶斯估计

本文介绍了朴素贝叶斯算法,通过举例说明如何使用贝叶斯公式和条件独立性假设来求解样本分类。文章还讨论了先验概率、后验概率的概念,并阐述了极大似然估计在计算中的作用。此外,针对训练数据不足可能导致的错误,提出了贝叶斯估计,特别是拉普拉斯平滑的方法,以提高分类准确性。
摘要由CSDN通过智能技术生成

在看贝叶斯算法的相关内容时,你一定被突如其来的数学概念搞得头昏脑涨。比如极大似然估计(Maximum likelihood estimation ),极大后验概率估计(Maximum a posteriori estimation),先验概率(Prior probability),后验概率(Posteriori probability)等。所以后面我就本着先学会用,再谈概念的路线来进行。

1. 朴素贝叶斯算法

先说结论: 朴素贝叶斯就是用贝叶斯公式外加“朴素”的条件来求解样本所属类别的概率

1.1 理解朴素贝叶斯

先不予证明的给出条件概率公式,以及贝叶斯定理(公式)
P ( A ∣ B ) = P ( A B ) P ( B ) (1.1) \begin{aligned} &P(A|B)=\frac{P(AB)}{P(B)} \end{aligned}\tag{1.1} P(AB)=P(B)P(AB)(1.1)

P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) (1.2) \begin{aligned} &P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum_{i=1}^nP(A_i)P(B|A_i)} \end{aligned}\tag{1.2} P(AiB)=i=1nP(Ai)P(BAi)P(Ai)P(BAi)(1.2)

设输入空间 X ⊆ R n \mathcal{X}\subseteq R^n XRn,为 n n n维向量的集合,输出空间为类标记 Y = { c 1 , c 2 , . . . , c m } \mathcal{Y}=\{c_1,c_2,...,c_m\} Y={ c1,c2,...,cm}.输入为特征向量 x ∈ X x\in\mathcal{X} xX,输出为类标记 y ∈ Y y\in \mathcal{Y} yY X X X是定义在输入空间 X \mathcal{X} X上的随机向量, Y Y Y是定义在输出空间 Y \mathcal{Y} Y上的随机变量。也就是说 X X X是一个 m × n m\times n m×n的矩阵, y y y为类标签。训练集:
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\} T={ (x1,y1),(x2,y2),...,(xm,ym)}

则有:
P ( Y = c k ) = # c k m , k = 1 , 2 , . . . , K (1.3) \begin{aligned} &P(Y=c_k) = \frac{\#c_k}{m},k=1,2,...,K \end{aligned}\tag{1.3} P(Y=ck)=m#ck,k=1,2,...,K(1.3)

( # c k 表示该类别一共有多少个样本 ) P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) (1.4) \begin{aligned} &(\#c_k\textrm{表示该类别一共有多少个样本})\\[2ex] &P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_k) \end{aligned}\tag{1.4} (#ck表示该类别一共有多少个样本)P(X=xY=ck)=P(X(1)=x(1),...,X(n)=x(n)Y=ck)(1.4)

又因为朴素贝叶斯对条件概率分布做了条件独立性假设,即有 P ( A B ∣ D ) = P ( A ∣ D ) P ( B ∣ D ) P(AB|D)=P(A|D)P(B|D) P(ABD)=P(AD)P(BD),而这也是“朴素”一词的由来,因此公式 ( 1.4 ) (1.4) (1.4)可写成如下形式:
P ( X = x ∣ Y = c k ) = ∏ i = 1 n P ( X ( i ) = x ( i ) ∣ Y = c k ) (1.5) P(X=x|Y=c_k)=\prod_{i=1}^nP(X^{(i)}=x^{(i)}|Y=c_k)\tag{1.5} P(X=xY=ck)=i=1nP(X(i)=x(i)Y=ck)(1.5)

由贝叶斯公式 ( 1.2 ) (1.2) (1.2)可知:
P ( Y = c k ∣ X = x ) P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ i = 1 n P ( X = x ∣ Y = c i ) P ( Y = c i ) (1.6) P(Y=c_k|X=x)\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum_{i=1}^nP(X=x|Y=c_i)P(Y=c_i)}\tag{1.6} P(Y=ckX=x)i=1nP(X=xY=ci)P(Y=ci)P(X=xY=ck)P(Y=ck)(1.6)

根据公式 ( 1.6 ) (1.6) (1.6)我们可以计算出任一样本 x i x_i xi属于类别 c k c_k ck的概率,选择其中概率最大者便可作为其分类的类标。但我们发现, ( 1.6 ) (1.6) (1.6)中,对于每个样本的计算都有相同的分母,因此可以略去。则再代入公式 ( 1.5 ) (1.5) (1.5),可化简为:
y = a r g max ⁡ c k P ( Y = c k ) ∏ i = 1 n P ( X ( i ) = x (

  • 12
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值