统计学习方法第四章朴素贝叶斯的贝叶斯估计,例题4.2代码实践

统计学习方法第四章朴素贝叶斯的贝叶斯估计,例题4.2代码实践(如需要查看极大似然估计的算法请看我的另一篇文章http://blog.csdn.net/grinandbearit/article/details/79044065),贝叶斯算法略微复杂了点对分子分母做了矫正防止出现乘0现象

#-*- coding:utf-8 -*-
from numpy import *

#将书上的数据输入,这里懒得输入那么多个列表就用下array的转置方法吧!就用这个方法吧0.0
def loadDataSet():
    dataSet=[[1,1,1,1,1,2,2,2,2,2,3,3,3,3,3],['S','M','M','S','S','S','M','M','L','L','L','M','M','L','L']]
    labels=[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1]
    return array(dataSet).transpose().tolist(),labels
'''
这里将labels中所有不同的类别及其类别的概率存储在一个字典中方便调用,这个可扩展性也比较强,支持n分类(不局限于书上的二分类),
alpha对应于拉普拉斯平滑的一个参数
'''
def calc_label(labels,alpha):
    m=len(labels)
    uniqueLabel=set(labels) #所有不重复的类别
    diffLabelNum=len(uniqueLabel)
    labelRate={}
    for label in uniqueLabel:
        labelRate[label]=(labels.count(label)+alpha)/float(m+diffLabelNum*alpha) #分子分母对应于极大似然估计做了改变
    return labelRate,list(uniqueLabel) #刚开始的uniqueLabel是set属性不方便计算,这里转换成list

#计算词汇表,即所有的不重复的属性值融合到一个列表中
def calcVocaulary(dataset):
    voca=set()
    for content in dataset:
        voca = voca | set(content)
    return list(voca)

#计算词向量,在词汇表中出现则在对应位置加1
def calcVector(voca,vector):
    n=len(voca)
    originVector=zeros(n)
    for word in vector:
        if word in voca:
            originVector[voca.index(word)] += 1
    return array(originVector) #为方便后面向量相加计算这里转换成array属性

#这个函数用于计算每个属性值的后验概率的分母
def calcUniqueValueNum(dataset,labels,label,voca):
    labelDataSet=[]
    for i in range(len(labels)):
        if labels[i]==label:
            labelDataSet.append(dataset[i])
    m,n=shape(labelDataSet)
    uniqueValueDict={}
    for i in range(n):
        uniqueValue=set()
        [uniqueValue.add(content[i])  for content in labelDataSet]
        for value in uniqueValue:
            uniqueValueDict[value] = len(uniqueValue)
    a=len(voca)
    returnArray=zeros(a)
    for key in uniqueValueDict:
        returnArray[voca.index(key)] = float(uniqueValueDict[key])
    return returnArray

#开始训练这里将不同类别及其类别对应的训练好的极大似然估计向量存储到字典中,同样字典的key长度对应于所有不重复的标记,可支持n类标记
def Bayes(dataset,labels,uniqueLabel,voca,alpha):
    n=len(uniqueLabel);m=len(dataset)
    trainVecDict={}
    for i in range(n):
        labelVector=array(ones(len(voca)))*alpha
        for j in range(m):
            if labels[j]== uniqueLabel[i]:
                labelVector += calcVector(voca,dataset[j]) #将相同类别的词向量相加

        labelVector /=  (labels.count(uniqueLabel[i])+calcUniqueValueNum(dataset,labels,uniqueLabel[i],voca)*alpha) #词向量的和除对应该类别出现的频率
        trainVecDict[uniqueLabel[i]]=labelVector  #将该类别及其训练好的极大似然估计向量存储到字典中
    return trainVecDict

#开始分类,结果即为类别概率最大的那个类别
def testFunction(testArray,voca,trainVecDict,labelRate):
    result = -1;maxRate = -inf
    for key in trainVecDict:
        singleLabelRate=1.0
        for word in testArray:
            singleLabelRate *= trainVecDict[key][voca.index(word)] #这里把测试集中出现的属性到每个分类对应的向量中取出其概率相乘
        if singleLabelRate*labelRate[key] > maxRate:
                result = key;maxRate =singleLabelRate*labelRate[key]
    return result

dataSet,labels=loadDataSet()
labelRate,uniqueLabel=calc_label(labels,1)
voca=calcVocaulary(dataSet)
trainVecDict=Bayes(dataSet,labels,uniqueLabel,voca,1)
testArray=array([2,'S'])
print  testFunction(testArray,voca,trainVecDict,labelRate)
print labelRate
print trainVecDict
结果如下:
['1', 'S', '2', 'M', '3', 'L']
-1
{1: 0.5882352941176471, -1: 0.4117647058823529}
{1: array([ 0.25      ,  0.16666667,  0.33333333,  0.41666667,  0.41666667,
        0.41666667]), -1: array([ 0.44444444,  0.44444444,  0.33333333,  0.33333333,  0.22222222,
        0.22222222])}






made by zcl at CUMT

I know I can because I have a heart that beats

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
统计学习方法是一种基于统计理论和机器学习方法,用于从数据中学习模型并进行预测和决策。朴素贝叶斯统计学习方法中的一种经典算法,它基于贝叶斯定理和特征条件独立假设,常用于文本分类、垃圾邮件过滤等任务。 下面是一个简单的朴素贝叶斯分类器的代码示例: ```python import numpy as np class NaiveBayes: def __init__(self): self.classes = None self.class_priors = None self.feature_probs = None def fit(self, X, y): self.classes = np.unique(y) self.class_priors = np.zeros(len(self.classes)) self.feature_probs = [] for i, c in enumerate(self.classes): X_c = X[y == c] self.class_priors[i] = len(X_c) / len(X) feature_probs_c = [] for j in range(X.shape[1]): feature_values = np.unique(X[:, j]) feature_prob = {} for v in feature_values: feature_prob[v] = len(X_c[X_c[:, j] == v]) / len(X_c) feature_probs_c.append(feature_prob) self.feature_probs.append(feature_probs_c) def predict(self, X): y_pred = [] for x in X: class_scores = [] for i, c in enumerate(self.classes): class_score = np.log(self.class_priors[i]) for j, feature_value in enumerate(x): class_score += np.log(self.feature_probs[i][j].get(feature_value, 1e-10)) class_scores.append(class_score) y_pred.append(self.classes[np.argmax(class_scores)]) return y_pred ``` 这段代码实现了一个简单的朴素贝叶斯分类器。`fit`方法用于训练模型,接受特征矩阵`X`和标签向量`y`作为输入。`predict`方法用于进行预测,接受特征矩阵`X`作为输入,并返回预测的标签向量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值