题意:问连续重复部分最多的串是什么,不能重叠,且我们要字典序最小的串如xbcabcab,有bcabca重复次数为2,cabcab重复次数也为2,那么要前边那个
思路:以前写过一个类似的,SPOJ 687,这个只是求连续重复部分最多的串的次数,并不需要将按字典序最小串输出,那么我们可以用到SPOJ687的代码,用它我们可以求出那个重复的次数和满足这个次数的串的长度,那么就只差找到字典序最小的那个串了,而我们知道后缀数组的sa数组就是按字典序来的嘛,从字典序最小开始找,找到就跳出,输出即可,如何判断以sa[i]开始的满不满足呢,因为我们有了可以达到重复次数的长度,那么枚举这个长度,在计算一次个数,与重复次数相同就满足条件了
//
// main.cpp
// 后缀数组
//
// Created by liuzhe on 17/2/5.
// Copyright © 2017年 my_code. All rights reserved.
//
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
//poj 3693
const int maxn = 100010;
int wa[maxn],wb[maxn],wv[maxn],ww[maxn];
int sa[maxn],lcp[maxn],rank[maxn],rank1[maxn];
char str[maxn];
int t,nn;
int dp[maxn][20];
inline bool cmp(int *r,int a,int b,int len)
{
return r[a]==r[b]&&r[a+len]==r[b+len];
}
void construct_sa(int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
n++;//why?
for(i=0;i<m;i++) ww[i]=0;
for(i=0;i<n;i++) ww[x[i]=str[i]]++;
for(i=1;i<m;i++) ww[i]+=ww[i-1];
for(i=n-1;i>=0;i--) sa[--ww[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p){
for(p=0,i=n-j;i<n;i++)
y[p++]=i;
for(i=0;i<n;i++){
if(sa[i]>=j)
y[p++]=sa[i]-j;
}
for(i=0;i<m;i++) ww[i]=0;
for(i=0;i<n;i++) ww[wv[i]=x[y[i]]]++;
for(i=1;i<m;i++) ww[i]+=ww[i-1];
for(i=n-1;i>=0;i--) sa[--ww[wv[i]]]=y[i];
for(t=x,x=y,y=t,x[sa[0]]=0,p=i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
}
void construct_lcp(int n)
{
for(int i=0;i<=n;i++)
rank1[sa[i]] = i;
int h = 0;
lcp[0] = 0;
for(int i=0;i<n;i++)
{
int j = sa[rank1[i]-1];
if(h>0)
h--;
for(;j+h<n && i+h<n;h++)
if(str[i+h]!=str[j+h])
break;
lcp[rank1[i]-1] = h;
}
}
void RMQ_init(int n)
{
for(int i=1;i<=n;i++)
dp[i][0]=lcp[i-1];
for(int i=1;(1<<i)<=n;i++)
{
for(int j=1;j+(1<<i)-1<=n;j++)
{
dp[j][i]=min(dp[j][i-1],dp[j+(1<<(i-1))][i-1]);
}
}
}
int RMQ(int le,int ri)
{
le=rank1[le];
ri=rank1[ri];
if(le>ri)
swap(le,ri);
le++;
int k=0;
while((1<<(k+1))<=ri-le+1)
k++;
int ans2=min(dp[le][k],dp[ri-(1<<k)+1][k]);
return ans2;
}
int tmp[maxn],kkk,vis[maxn];
int solve(int n)
{
int ans=0,sum;
kkk=0;
memset(vis,0,sizeof(vis));
for(int len=1;len<=n;len++)
{
for(int i=0;i+len<=n;i+=len)
{
int t=RMQ(i,i+len);
sum=t/len+1;
int pos=i-(len-t%len);
if(pos>=0&&t%len!=0)
if(RMQ(pos,pos+len)>=(len-t%len))
sum++;
if(sum>ans) ans=sum;
}
}
for(int len=1;len<=n;len++)
{
for(int i=0;i+len<=n;i+=len)
{
int t=RMQ(i,i+len);
sum=t/len+1;
int pos=i-(len-t%len);
if(pos>=0&&t%len!=0) if(RMQ(pos,pos+len)>=(len-t%len)) sum++;
if(sum==ans&&vis[len]==0)
{
vis[len]=1;
tmp[kkk++]=len;
}
}
}
return ans;
}
int main()
{
int cas=1;
while(scanf("%s",str)!=-1)
{
if(str[0]=='#')
break;
int len=strlen(str);
construct_sa(len,200);
construct_lcp(len);
RMQ_init(len);
int ans=solve(len);
printf("Case %d: ",cas++);
int pos=0,leng=0,flag=0;
for(int i=1;i<=len;i++)
{
for(int j=0;j<kkk;j++)
{
//枚举可以使重复次数到达ans的长度
int t=RMQ(sa[i],sa[i]+tmp[j]);
if(t/tmp[j]+1==ans)
{
//再次计算sa[i]开始的重复次数
pos=sa[i];
leng=tmp[j];
flag=1;
break;//满足即跳出
}
}
if(flag)
break;
}
for(int i=pos,j=0;j<leng*ans;j++,i++)
printf("%c",str[i]);
printf("\n");
}
return 0;
}