poj 3693连续重复最多的串

题意:问连续重复部分最多的串是什么,不能重叠,且我们要字典序最小的串如xbcabcab,有bcabca重复次数为2,cabcab重复次数也为2,那么要前边那个

思路:以前写过一个类似的,SPOJ 687,这个只是求连续重复部分最多的串的次数,并不需要将按字典序最小串输出,那么我们可以用到SPOJ687的代码,用它我们可以求出那个重复的次数和满足这个次数的串的长度,那么就只差找到字典序最小的那个串了,而我们知道后缀数组的sa数组就是按字典序来的嘛,从字典序最小开始找,找到就跳出,输出即可,如何判断以sa[i]开始的满不满足呢,因为我们有了可以达到重复次数的长度,那么枚举这个长度,在计算一次个数,与重复次数相同就满足条件了


//
//  main.cpp
//  后缀数组
//
//  Created by liuzhe on 17/2/5.
//  Copyright © 2017年 my_code. All rights reserved.
//

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;

//poj 3693
const int maxn = 100010;
int wa[maxn],wb[maxn],wv[maxn],ww[maxn];
int sa[maxn],lcp[maxn],rank[maxn],rank1[maxn];
char str[maxn];
int t,nn;
int dp[maxn][20];
inline bool cmp(int *r,int a,int b,int len)
{
    return r[a]==r[b]&&r[a+len]==r[b+len];
}

void construct_sa(int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    n++;//why?
    for(i=0;i<m;i++) ww[i]=0;
    for(i=0;i<n;i++) ww[x[i]=str[i]]++;
    for(i=1;i<m;i++) ww[i]+=ww[i-1];
    for(i=n-1;i>=0;i--) sa[--ww[x[i]]]=i;
    for(j=p=1;p<n;j<<=1,m=p){
        for(p=0,i=n-j;i<n;i++)
            y[p++]=i;
        for(i=0;i<n;i++){
            if(sa[i]>=j)
                y[p++]=sa[i]-j;
        }
        for(i=0;i<m;i++) ww[i]=0;
        for(i=0;i<n;i++) ww[wv[i]=x[y[i]]]++;
        for(i=1;i<m;i++) ww[i]+=ww[i-1];
        for(i=n-1;i>=0;i--) sa[--ww[wv[i]]]=y[i];
        for(t=x,x=y,y=t,x[sa[0]]=0,p=i=1;i<n;i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
}

void construct_lcp(int n)
{
    for(int i=0;i<=n;i++)
        rank1[sa[i]] = i;
    int h = 0;
    lcp[0] = 0;
    for(int i=0;i<n;i++)
    {
        int j = sa[rank1[i]-1];
        if(h>0)
            h--;
        for(;j+h<n && i+h<n;h++)
            if(str[i+h]!=str[j+h])
                break;
        lcp[rank1[i]-1] = h;
    }
}

void RMQ_init(int n)
{
    for(int i=1;i<=n;i++)
        dp[i][0]=lcp[i-1];
    for(int i=1;(1<<i)<=n;i++)
    {
        for(int j=1;j+(1<<i)-1<=n;j++)
        {
            dp[j][i]=min(dp[j][i-1],dp[j+(1<<(i-1))][i-1]);
        }
    }
}

int RMQ(int le,int ri)
{
    le=rank1[le];
    ri=rank1[ri];
    if(le>ri)
        swap(le,ri);
    le++;
    int k=0;
    while((1<<(k+1))<=ri-le+1)
        k++;
    int ans2=min(dp[le][k],dp[ri-(1<<k)+1][k]);
    return ans2;
}

int tmp[maxn],kkk,vis[maxn];

int solve(int n)
{
    int ans=0,sum;
    kkk=0;
    memset(vis,0,sizeof(vis));
    for(int len=1;len<=n;len++)
{
        for(int i=0;i+len<=n;i+=len)
{
            int t=RMQ(i,i+len);
            sum=t/len+1;
            int pos=i-(len-t%len);
            if(pos>=0&&t%len!=0) 
if(RMQ(pos,pos+len)>=(len-t%len)) 
sum++;
            if(sum>ans) ans=sum;
        }
    }
    for(int len=1;len<=n;len++)
{
        for(int i=0;i+len<=n;i+=len)
{
            int t=RMQ(i,i+len);
            sum=t/len+1;
            int pos=i-(len-t%len);
            if(pos>=0&&t%len!=0) if(RMQ(pos,pos+len)>=(len-t%len)) sum++;
            if(sum==ans&&vis[len]==0)
{
                vis[len]=1;
                tmp[kkk++]=len;
            }
        }
    }
    return ans;
}
int main()
{
    int cas=1;
    while(scanf("%s",str)!=-1)
    {
        if(str[0]=='#')
            break;
        int len=strlen(str);
        construct_sa(len,200);
        construct_lcp(len);
        RMQ_init(len);
        int ans=solve(len);
        printf("Case %d: ",cas++);
        int pos=0,leng=0,flag=0;
        for(int i=1;i<=len;i++)
        {
            for(int j=0;j<kkk;j++)
            {
                //枚举可以使重复次数到达ans的长度
                int t=RMQ(sa[i],sa[i]+tmp[j]);
                if(t/tmp[j]+1==ans)
                {
                    //再次计算sa[i]开始的重复次数
                    pos=sa[i];
                    leng=tmp[j];
                    flag=1;
                    break;//满足即跳出
                }
            }
            if(flag)
                break;
        }
        for(int i=pos,j=0;j<leng*ans;j++,i++)
            printf("%c",str[i]);
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值