LA 4851 Restaurant
题目大意:
有M*M网格,左下角(0,0),右上角(M-1,M-1).上面有n个餐厅,其中编号为1和2的分别是AB两宾馆的餐厅.对于一个位置,若存在与之前已有的任意餐厅位置相比,更靠近A或者B,就定义为”好位置”.问”好位置”的个数.(其中,两点间的距离为曼哈顿距离,即横纵坐标差的绝对值之和)
题目分析:
因为AB同纵坐标Y,所以尝试从xa移动到xb.
则设d数组,d[i]表示x=i时,纵坐标能到达的最大值.
那么对于每有一个点(x,y),则有d[x]=min(d[x],abs(Y-y)).
再从左至右,从右至左来递推一遍,d[x]=min(d[x],d[x±1]+1).
代码:
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxm=60000+10;
int d[maxm];
int main()
{
int T;
scanf("%d",&T);
while(T--) {
int M,n;
scanf("%d%d",&M,&n);
int x1,Y,x2,y2;
scanf("%d%d%d%d",&x1,&Y,&x2,&y2);
if(x1>x2) swap(x1,x2); n-=2;
for(int i=x1+1;i<x2;i++) d[i]=M; d[x1]=d[x2]=0;
for(int x,y,i=0;i<n;i++) {
scanf("%d%d",&x,&y);
d[x]=min(d[x],abs(Y-y));
}
for(int i=x2-1;i>=x1;i--) d[i]=min(d[i],d[i+1]+1);
for(int i=x1+1;i<=x2;i++) d[i]=min(d[i],d[i-1]+1);
long long ans=0;
for(int i=x1;i<=x2;i++) if(d[i]) {//因为A,B纵坐标相同上,所以一个饭店关于y对称的点也是等效的,故算上面下面的时候都可用d数组
++ans;
ans+=min(d[i]-1,Y);
ans+=min(d[i]-1,M-Y-1);
}
printf("%lld\n",ans);
}
return 0;
}