FJOI2016 建筑师(组合数学)

FJOI2016 建筑师

昨天考了场省选模拟赛,下来才知道是FJOI2016,不过T1,T2都没在OJ上找到??
T2倒是以前在紫书上面的UVa 1638做到过类似的.


题意概述

n 个建筑,高度为1~ n 不等,问满足从左往右看有a个建筑,从右往左看有 b 个建筑的方案数(答案模109+7,其中多组询问).

数据范围:
10%:1n10
20%:1n100
40%:1n5104,1T5
100%:1n5104 , 1a,b100,1T2105 .

题目分析:

(为了叙述方便,将建筑视为杆子)

20% 的解法

20% 的话和UVa 1638是一样的.

定义状态 f(i,j,k) 表示由高度为 1 ~i i 根杆子组成从左看得到j个,从右看得到 k 个的方案数.

因为对于n个杆子而言,只要相对高度不变,具体高度不影响方案数.
则对于 1 ~i1 i1 个杆子而言,它的方案数等同于 2 ~i i1 个杆子的方案数.

由于考虑最高的杆子会挡住低的杆子,比较麻烦.
所以从 i1 转移到 i ,可以考虑1号杆子的影响.

若放在最左边,左边加 1 ,方案数为f(i1,j1,k).
若放在最右边,右边加 1 ,方案数为f(i1,j,k1).
而若 1 号放在中间的话,不会被看见.
i1个杆子的话,中间有 i2 个空隙,方案数为 f(i1,j,k)(i2) .

综上所述,转移方程如下

f(i,j,k)=f(i1,j1,k)+f(i1,j,k1)+f(i1,j,k)(i2)

时间复杂度为 O(Tnab) .

40% 的解法

其实可以发现在上面的方法中左右两边是一样的.
基于此,考虑降维,减少状态.

f(i,j) 表示用i个杆子,然后最大的放在最右边,从左能看到 j 个杆子的方案数.
和上面类似的,可以得到转移方程

f(i,j)=f(i1,j1)+f(i1,j)(i2)

那么最后的答案为

f(i,a)f(ni+1,b)|1in

时间复杂度为 O(Tnmax(l,r)) .

100% 的解法

话说这个题,我在涨老师的博客上看到了一种特别妙的解法,据说是汪神搞出来的.
先说一下答案(其中 su 表示无符号第一类斯特林数)

su(n1,a+b2)C(a+b2,a1)

下面来解释一下

观察上图,这是从左和从右能看到杆子的一个汇总.

(因为 n 号杆子无论放在何处均可见,故在下面证明的时候不包含n号杆子.)

以左边为例,一个可见杆子之后跟着一些不可见杆子,如 1 ~2间的杆子是不可见的,且他们都要比 1 号高度低.将这样一个可见杆子和其后的不可见杆子理解成一个集合,那么像这个样子的集合有a+b2个.

对于每一个集合而言,除了最高的杆子(即可见杆子)的位置必须放在最前面以外,其他的杆子其实是可以随意放置的.那么可将其连起来形成一个圆,对于一个圆而言,若从任意一处切开形成的序列中合法序列(即满足最高杆子在最前面)有且仅有一个,即一个圆仅代表一种方案.假设这个集合有 k 根杆子,那么对于该集合的合法方案就有su(k,1)种.
那么对于一共的 n1 根杆子来说,就有 su(n1,a+b2) 种方案.

这只是保证了有 a+b2 根杆子可见,而对于要使得左边看见 a 根杆子而言,即在这a+b2个集合中任意选择 a1 个集合放在 n 号杆子左边,即可.即要满足左边看见a根杆子的方案数为 C(a+b2,a1) .

综上所述,满足条件的方案数为 su(n1,a+b2)C(a+b2,a1) .

基于此,可以做到 O(na+a2) 预处理, O(1) 回答询问.

代码实现:

#include<cstdio>
#include<iostream>
#include<algorithm>

using namespace std;

int read() {
    char ch=getchar();int ret=0;
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return ret;
}

const int MOD=1e9+7;
const int maxa=200+10;
const int maxn=50000+10;

int s[maxn][maxa];//s(p,k)表示p个元素组成k个圆排列的方案数 即第一类斯特林数 
int C[maxa][maxa];//C(n,m)表示n个元素中取出m个元素的方案数 即组合数 

void init(int n,int a) {
    for(int i=0;i<=n;i++) {
        s[i][0]=0;
        if(i<=a) s[i][i]=1;
        for(int j=1;j<=min(i,a);j++) s[i][j]=(0ll+s[i-1][j-1]+1ll*(i-1)*s[i-1][j]%MOD)%MOD;
    }
    for(int i=0;i<=a;i++) {
        C[i][0]=1;
        for(int j=1;j<=i;j++) C[i][j]=(0ll+C[i-1][j]+C[i-1][j-1])%MOD;
    }
}

int main() {
    freopen("building.in","r",stdin);
    freopen("building.out","w",stdout);

    init(50000,200);
    int T=read(),n,a,b;
    while(T--) {
        n=read(),a=read(),b=read();
        printf("%lld\n",(1ll*s[n-1][a+b-2]*C[a+b-2][a-1])%MOD);
    }
    return 0;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值