分块入门之求最大值
分块,优美的暴力
Description
Input
第一行给出一个数字N,接下来N+1行,每行给出一个数字Ai,(1<=i<=N<=1E5)
接来给出一个数字Q(Q<=7000),代表有Q个询问
每组询问格式为a,b即询问从输入的第a个数到第b个数,其中的最大值是多少
Output
如题所述
Sample Input
10
0
1
2
3
2
3
4
3
2
1
0
5
0 10
2 4
3 7
7 9
8 8
Sample Output
4
3
4
3
2
第一眼看很容易想到用暴力循环枚举区间的最值,但当n极大时,暴力直接原地爆炸。而分块就可以用空间换时间达到时空平衡。
可以把这想象成一个班级,一天老师问从编号i~j的同学中最高的是哪个,老师可以挨着一个个问做比较,但当班级里的人数很大的时候,老师肯定会累死。而分块就相当于班级里的小组,对于不是处于完整的小组,老师挨个问就可以;对于完整的小组,老师就只想要问小组长——分块维护的状态,就可以快速得到答案。
分块的一些基础
- 块数:一般取q=sqrt(n),表示一个块(小组)有多少个元素(成员)。
- 整块:完整的块(小组),如一个块有10个元素,那么这10个你都能进查询行操作。
- 残块:不完整的块,一个块本来有10个元素,而你能进行查询操作的只有<10个
有了块的基本概念后,还需要了解块的id与元素id直接的转换方法
对于a[i],它所对应的块的下标就是(i-1)/sqrt(n)+1,可以用一个数组to[i]=(i-1)/q+1来存下,表示a[i]对应的块的编号就是to[i]
对于第i个块,它所对应的最左下标就是(i-1)*q+1,所对应的最右下标为min(n,tu[l]*q),注意,因为最右边的块是有可能为残块,如果直接访问最右边会出界,所以要跟n求min。 - 上面的公式可以自己堆一遍并拿几个数测试下加强记忆
能进行这些操作后,就可以着手解决这道题了。
输入和预处理
cin>>n>>m;//n,元素个数,m,访问个数
n++;//题目数据下标是从0开始,一般从1开始好操作
q=sqrt(n);
for(int i=1;i<=n;i++){
cin>>a[i];
to[i]=(i-1)/q+1;//预处理第i个元素对应的块的下标
//c[i]表示第i个块最大的值(状态)
c[tu[i]]=max(a[i],c[tu[i]]);//提前预处理出第i个块的最大值
}
输入查询操作
for(int i=1;i<=m;i++){
int l,r;
scanf(