题意:
给出n个线段 ,问 第 i 条线段 覆盖了多少条线段,(不包括其本身),且每条线段的终点不会相同,
思路: 将右端点离散,将左端点从小到大排序,满足 Li <= L(i+1)如果左端点相同,则右端点小的排在前面,这样就保证 第i 条线段 后边的不会包括在第i条内,只需计算i前面d有多少个 右端点小于 第i 条的,讲线段有端的标记为1 ,只需统计 1--- 第i 条线段右端点的和是多少(树状数组),然后更新区间第i条右端点的值为1 ,就是第i条线段内所包括的线段个数,
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3*1000010;
int sum[maxn];
struct node
{
int x,y,id;
};
node a[maxn];
int ans[maxn];
int n;
int low_bit(int x)
{
return x &(-x);
}
bool cmp(node x1,node y1)
{
return x1.y<y1.y;
}
bool cmp1(node x1,node y1)
{
if(x1.x!=y1.x)
return x1.x>y1.x;
return x1.y<y1.y;
}
void update(int xx)
{
while(xx<=n)
{
sum[xx]++;
xx+=low_bit(xx);
}
}
int query(int x)
{
int ans = 0;
while(x>0)
{
ans+=sum[x];
x-=low_bit(x);
}
return ans ;
}
int main()
{
scanf("%d",&n);
for(int i = 1; i<=n; i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
a[i].id = i;
}
sort(a+1,a+1+n,cmp);
for(int i =1; i<=n; i++)
a[i].y = i;//离散右端点
sort(a+1,a+1+n,cmp1);
for(int i = 1; i<=n; i++)
{
ans[a[i].id] = query(a[i].y);//询问
update(a[i].y);//求和
}
for(int i = 1;i<=n;i++)
{
printf("%d\n",ans[i]);
}//putchar('\n');
}