实现
下面是用 Java 程序比较 FCFS,SJF 和 PSA 算法效率的示例代码:
FCFS
思路
对于 FCFS 算法,我们可以定义一个 Process 类来表示一个进程,其中包含进程名称、到达时间和执行时间三个属性。然后我们可以定义一个 FCFS 类,其中包含一个 ArrayList 来存储所有的进程,并实现调度算法的逻辑。
源码
`
public class FCFS {
private ArrayList<Process> processList;
public FCFS(ArrayList<Process> processList) {
this.processList = processList;
}
public void schedule() {
// 按照进程的到达时间升序排序
Collections.sort(processList, (p1, p2) -> p1.arrivalTime - p2.arrivalTime);
int currentTime = 0;
int waitingTime = 0;
int turnaroundTime = 0;
for (Process p : processList) {
if (currentTime < p.arrivalTime) {
currentTime = p.arrivalTime;
}
waitingTime += currentTime - p.arrivalTime;
turnaroundTime += currentTime - p.arrivalTime + p.executionTime;
currentTime += p.executionTime;
}
double averageWaitingTime = (double) waitingTime / processList.size();
double averageTurnaroundTime = (double) turnaroundTime / processList.size();
System.out.println("平均等待时间:" + averageWaitingTime);
System.out.println("平均周转时间:" + averageTurnaroundTime);
}
}
`
解释
在 FCFS 算法的示例代码中,我们定义了一个 Process 类来表示一个进程,包含进程名称、到达时间和执行时间三个属性。然后我们定义了一个 FCFS 类,其中包含一个 ArrayList 来存储所有的进程,并实现调度算法的逻辑。
调度算法的逻辑如下:
-
首先,将进程列表按照到达时间升序排序。
-
然后,遍历每一个进程
-
如果当前时刻小于进程的到达时间,则将当前时刻更新为进程的到达时间。
-
然后,计算等待时间和周转时间:
- 等待时间 = 当前时刻 - 进程的到达时间
- 周转时间 = 当前时刻 - 进程的到达时间 + 进程的执行时间
-
最后,将当前时刻更新为当前时刻 + 进程的执行时间。
在遍历完所有的进程之后,我们可以计算平均等待时间和平均周转时间,以此来评估 FCFS 算法的性能。
最后,调用 FCFS 类的 schedule 方法来执行调度算法即可。
SJF
思路
对于 FCFS 算法,我们可以定义一个 Process 类来表示一个进程,其中包含进程名称、到达时间和执行时间三个属性。然后我们可以定义一个 FCFS 类,其中包含一个 ArrayList 来存储所有的进程,并实现调度算法的逻辑。
源码
`
public class SJF {
private ArrayList<Process> processList;
public SJF(ArrayList<Process> processList) {
this.processList = processList;
}
public void schedule() {
int currentTime = 0;
int waitingTime = 0;
int turnaroundTime = 0;
while (!processList.isEmpty()) {
// 找到当前时刻最先到达的,执行时间最短的进程
Process p = processList.stream()
.filter(process -> process.arrivalTime <= currentTime)
.min((p1, p2) -> p1.executionTime - p2.executionTime)
.get();
waitingTime += currentTime - p.arrivalTime;
turnaroundTime += currentTime - p.arrivalTime + p.executionTime;
currentTime += p.executionTime;
processList.remove(p);
}
double averageWaitingTime = (double) waitingTime / processList.size();
double averageTurnaroundTime = (double) turnaroundTime / processList.size();
System.out.println("平均等待时间:" + averageWaitingTime);
System.out.println("平均周转时间:" + averageTurnaroundTime);
}
}
`
解释
在 SJF 算法的示例代码中,我们定义了一个 Process 类来表示一个进程,包含进程名称、到达时间和执行时间三个属性。然后我们定义了一个 SJF 类,其中包含一个 ArrayList 来存储所有的进程,并实现调度算法的逻辑。
调度算法的逻辑如下:
-
使用 stream API 的 filter 和 min 方法来找到当前时刻最先到达的,执行时间最短的进程。
-
然后,计算等待时间和周转时间:
- 等待时间 = 当前时刻 - 进程的到达时间
- 周转时间 = 当前时刻 - 进程的到达时间 + 进程的执行时间
-
最后,将当前时刻更新为当前时刻 + 进程的执行时间。
在遍历完所有的进程之后,我们可以计算平均等待时间和平均周转时间,以此来评估 SJF 算法的性能。
最后,调用 SJF 类的 schedule 方法来执行调度算法即可。
PSA
思路
对于 PSA 算法,我们需要在 Process 类中增加一个优先级的属性,并在调度算法的逻辑上进行相应的修改。
如果进程在等待 CPU 时间的时间越长,就将它的优先级设为越高。这样,当进程获得 CPU 时间的机会时,就能够优先执行。这种算法能够有效地应对突发性的高优先级作业。
- 首先,为每个进程设定一个初始优先级。
- 然后,每当进程等待 CPU 时间超过一定的阈值,就将进程的优先级提高。
- 当进程获得 CPU 时间时,按照优先级的高低进行调度。
需要注意的是,当进程执行完成后,需要将进程的优先级恢复为初始值。
源码
`
public class PSA {
private ArrayList<Process> processList;
public PSA(ArrayList<Process> processList) {
this.processList = processList;
}
public void schedule() {
int currentTime = 0;
int waitingTime = 0;
int turnaroundTime = 0;
while (!processList.isEmpty()) {
// 找到当前时刻最先到达的,优先级最高的进程
Process p = processList.stream()
.filter(process -> process.arrivalTime <= currentTime)
.max((p1, p2) -> p1.priority - p2.priority)
.get();
waitingTime += currentTime - p.arrivalTime;
turnaroundTime += currentTime - p.arrivalTime + p.executionTime;
currentTime += p.executionTime;
processList.remove(p);
}
double averageWaitingTime = (double) waitingTime / processList.size();
double averageTurnaroundTime = (double) turnaroundTime / processList.size();
System.out.println("平均等待时间:" + averageWaitingTime);
System.out.println("平均周转时间:" + averageTurnaroundTime);
}
}
`
解释
首先,在示例代码中,我们定义了一个 Process 类来表示一个进程,包含进程名称、到达时间、执行时间和剩余执行时间四个属性。然后我们定义了一个 PSA 类,其中包含一个 ArrayList 来存储所有的进程,并实现调度算法的逻辑。
调度算法的逻辑如下:
-
首先,将进程列表按照到达时间升序排序。
-
然后,循环执行以下步骤,直到进程列表为空:
- 从进程列表中取出第一个进程,并将其从列表中移除。
- 如果当前时刻小于进程的到达时间,则将当前时刻更新为进程的到达时间。
- 如果进程的剩余执行时间大于时间片,则执行时间片的长度;否则,执行进程剩余的所有时间。
-
计算等待时间和周转时间:
- 等待时间 = 当前时刻 - 进程的到达时间
- 周转时间 = 当前时刻 - 进程的到达时间 + 进程的执行时间
-
如果进程的剩余执行时间为 0,则将进程从进程列表中移除;否则,将进程插入进程列表的末尾。
-
将当前时刻更新为当前时刻 + 执行的时间。
在遍历完所有的进程之后,我们可以计算平均等待时间和平均周转时间,以此来评估 PSA 算法的性能。
最后,调用 PSA 类的 schedule 方法来执行调度算法即可。
三种方法效率比较
都以相同的开始时间、进行时间、以及优先级进行比较
arr[0]={0,20,2};
arr[1]={5,15,1};
arr[2]={10,5,4};
arr[3]={15,10,3};
优先级是为了比较PSA的两种抢占效率(抢占式、非抢占式).
FCFS
SJF
PSA
抢占式
非抢占式
总结:
FCFS 算法是一种简单的调度算法,它按照进程的到达时间顺序依次执行进程,不考虑进程的执行时间。由于不能有效地应对短作业,因此 FCFS 算法的效率并不高。
SJF 算法是一种较高效的调度算法,它优先执行执行时间较短的进程,能够有效地应对短作业。但是,SJF 算法不能有效地应对突发性的高优先级作业。
PSA 算法是一种动态调度算法,它根据进程的等待时间动态调整进程的优先级,能够有效地应对突发性的高优先级作业。但是,PSA 算法的实现较为复杂,因此其运行效率略低于 SJF 算法。
总的来说,SJF 算法的效率略高于 PSA 算法,而 FCFS 算法的效率较低。不同的调度算法适用于不同的场景,应根据实际需要选择合适的调度算法。