Description
约翰遭受了重大的损失:蟑螂吃掉了他所有的干草,留下一群饥饿的牛.他乘着容量为C(1≤C≤50000)个单位的马车,去顿因家买一些干草. 顿因有H(1≤H≤5000)包干草,每一包都有它的体积Vi(l≤Vi≤C).约翰只能整包购买,
他最多可以运回多少体积的干草呢?
Input
第1行输入C和H,之后H行一行输入一个Vi.
Output
最多的可买干草体积.
Sample Input
7 3 //总体积为7,用3个物品来背包
2
6
5
The wagon holds 7 volumetric units; three bales are offered for sale with
volumes of 2, 6, and 5 units, respectively.
2
6
5
The wagon holds 7 volumetric units; three bales are offered for sale with
volumes of 2, 6, and 5 units, respectively.
Sample Output
7 //最大可以背出来的体积
HINT
Buying the two smaller bales fills the wagon.
Source
就感觉是背包问题但是好别扭……
哦。。哦对了!
就是背包的体积可行性问题。
一开始dp[0]=true,
然后若dp[x]=true,dp[x+v[u]]=true。
然后其实有一丝贪心成分吧……分组还是不放贪心里了……。
最后就从大到小搜索到第一个为true的值,,
这个值就是最大的可以放的体积。
怎么感觉自己跑得有些慢……
#include<bits/stdc++.h>
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int
N=50005;
int C,H;
bool f[N];
int main(){
C=read(),H=read();
int x; f[0]=1;
for (int i=1;i<=H;i++){
x=read();
for (int j=0;j<=C-x;j++)
f[j+x]|=f[j];
}
for (int i=C;~i;i--)
if (f[i]){
printf("%d\n",i);
break;
}
return 0;
}