BZOJ 2223 [Coci 2009]PATULJCI 主席树

Description

Input

Output

10 3 1 2 1 2 1 2 3 2 3 3 8 1 2 1 3 1 4 1 5 2 5 2 6 6 9 7 10

Sample Input

no
yes 1
no
yes 1
no
yes 2
no
yes 3

Sample Output

HINT

Notice:输入第二个整数是序列中权值的范围Lim,即1<=ai(1<=i<=n)<=Lim。

1<=Lim<=10000




传送门

bzoj3524~~~

完全一样的题= =

我连数据范围都没改就交了……

注意一下输出的格式两题是不同的。



#include<bits/stdc++.h>
using namespace std;
int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int 
	N=500005,
	logN=25;
int n,LIM,Tcnt;
int root[N];
struct ChairTree{
	int l,r,num;
}ct[N*logN];
void insert(int L,int R,int &x,int val){
	ct[Tcnt++]=ct[x];
	x=Tcnt-1;
	ct[x].num++;
	if (L==R) return;
	int mid=(L+R)>>1;
	if (val<=mid) insert(L,mid,ct[x].l,val);
		else insert(mid+1,R,ct[x].r,val);
}
int query(int L,int R,int ll,int rr,int g){
	if (L==R) return L;
	int mid=(L+R)>>1,
		t1=ct[ct[rr].l].num-ct[ct[ll].l].num,
		t2=ct[ct[rr].r].num-ct[ct[ll].r].num;
	if (t1>g) return query(L,mid,ct[ll].l,ct[rr].l,g); else
	if (t2>g) return query(mid+1,R,ct[ll].r,ct[rr].r,g);
		else return 0;
}
int main(){
	n=read(),LIM=read();
	root[0]=0,Tcnt=1;
	for (int i=1;i<=n;i++)
		root[i]=root[i-1],insert(1,LIM,root[i],read());
	int x,y,m=read();
	while (m--){
		x=read(),y=read();
		int t=query(1,LIM,root[x-1],root[y],(y-x+1)>>1);
		if (!t) puts("no");
			else printf("yes %d\n",t);
	}
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值