BZOJ 3524 [Poi2014]Couriers 主席树

Description

给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6

Sample Output

1
0
3
0
4

HINT

【数据范围】

n,m≤500000


2016.7.9重设空间,但未重测!




传送门

AC 100 纪念!(蒟蒻)

撒花撒花~~~~~



其实主席树好像就是可持久化线段树??(唔)

主席树(Chair Tree)是把n棵线段树,从O(N^2)的空间优化到了O(NlogN)

因为这n棵函数式线段树(权值线段树)的结构都是一致的,

以及一些特点,我们就可以优化了。

记得有个有图的教程似乎不错看看图就可以懂了的吧……


这题:

其实题意就是找m个区间的众数。

那么一个众数出现次数就是在区间长度一半以上;

通过构建一棵主席树,我们可以用前缀和的思想搞出区间内一段连续数字的总出现次数。

事实上,我们只要沿着出现次数比一半大的方向不停往下找,就可以找到了;

当然如果不存在,那么就是下面的两个儿子的值都比区间一半小。

所以可以称是主席树的入门题目了吧……



双倍经验BZOJ 2223



#include<bits/stdc++.h>
using namespace std;
int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int 
	N=500005,
	logN=25;
int n,m,Tcnt;
int root[N];
struct ChairTree{
	int l,r,num;
}ct[N*logN];
void insert(int L,int R,int &x,int val){
	ct[Tcnt++]=ct[x];
	x=Tcnt-1;
	ct[x].num++;
	if (L==R) return;
	int mid=(L+R)>>1;
	if (val<=mid) insert(L,mid,ct[x].l,val);
		else insert(mid+1,R,ct[x].r,val);
}
int query(int L,int R,int ll,int rr,int g){
	if (L==R) return L;
	int mid=(L+R)>>1,
		t1=ct[ct[rr].l].num-ct[ct[ll].l].num,
		t2=ct[ct[rr].r].num-ct[ct[ll].r].num;
	if (t1>g) return query(L,mid,ct[ll].l,ct[rr].l,g); else
	if (t2>g) return query(mid+1,R,ct[ll].r,ct[rr].r,g);
		else return 0;
}
int main(){
	n=read(),m=read();
	root[0]=0,Tcnt=1;
	for (int i=1;i<=n;i++)
		root[i]=root[i-1],insert(1,n,root[i],read());
	int x,y;
	while (m--){
		x=read(),y=read();
		printf("%d\n",query(1,n,root[x-1],root[y],(y-x+1)>>1));
	}
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值