Description
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同
的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最
小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
Input
第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人
员维修第i辆车需要用的时间T。
Output
最小平均等待时间,答案精确到小数点后2位。
Sample Input
2 2
3 2
1 4
3 2
1 4
Sample Output
1.50
HINT
数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)
一道很好的费用流……
假设某个工人u修车的集合是固定的{A1..An}
那么顺序很关键,
对于倒数第x个修的车Ax,它对于u所拖住的时间是(u修Ax的时间)*x
这个应该很明显。
每个工人都是这样的。
我们把工人裂点,裂成n个,u1,u2……un,
分别表示对于工人u,修倒数第一个车的工人是u1,倒数第二个的是u2……
然后工人向对应车连边,费用就是上面所说的拖住的时间,流量为1。
源点向所有工人连边,所有车向汇点连边,费用都是0。
因为首先车要都修了,就是最大流;
同时拖住的总时间最少(工人和工人之间其实是独立的),
所以直接跑费用流就可以了……
#include<bits/stdc++.h>
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int
N=65,M=15,
INF=10000000;
int n,m,Ecnt;
int source,sink;
int Time[N][M];
int pre[N*M],dis[N*M];
bool vis[N*M];
struct Edge{
int next,to,from,C,cost;
}E[(N*N*M+N)<<1];int head[N*M];
void add(int u,int v,int C,int co){
E[Ecnt].next=head[u];
E[Ecnt].to=v;
E[Ecnt].from=u;
E[Ecnt].C=C,E[Ecnt].cost=co;
head[u]=Ecnt++;
}
queue<int> Q;
bool SPFA(int start,int end){
memset(dis,100,sizeof(dis));
memset(pre,0,sizeof(pre));
int inf=dis[0];
vis[start]=1,dis[start]=0;
while (!Q.empty()) Q.pop();
Q.push(start);
while (!Q.empty()){
int u=Q.front();Q.pop();
vis[u]=0;
for (int i=head[u];~i;i=E[i].next)
if (E[i].C){
int v=E[i].to;
if (dis[u]+E[i].cost<dis[v]){
dis[v]=dis[u]+E[i].cost;
pre[v]=i;
if (!vis[v]) Q.push(v),vis[v]=1;
}
}
}
return dis[end]!=inf;
}
int MCMF(int start,int end){
int f,Cost=0;
while (SPFA(start,end)){
f=INF;
for (int i=end;i!=start;i=E[pre[i]].from)
f=min(f,E[pre[i]].C);
for (int i=end;i!=start;i=E[pre[i]].from)
E[pre[i]].C-=f,E[pre[i]^1].C+=f;
Cost+=dis[end];
}
return Cost;
}
void build(){
source=n*m+n+1,sink=n*m+n+2;
Ecnt=0;int worker,num;
memset(head,255,sizeof(head));
for (int i=1;i<=n*m;i++){
worker=!(i%n)?i/n:i/n+1;
num=i-(worker-1)*n;
add(source,i,1,0),add(i,source,0,0);
for (int j=1;j<=n;j++){
add(i,n*m+j,1,Time[j][worker]*num),
add(n*m+j,i,0,-Time[j][worker]*num);
}
}
for (int i=1;i<=n;i++)
add(n*m+i,sink,1,0),add(sink,n*m+i,0,0);
}
int main(){
m=read(),n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) Time[i][j]=read();
build();
printf("%.2lf\n",(double)MCMF(source,sink)/(double)n);
return 0;
}