BZOJ 1070 [SCOI2007]修车 费用流

Description

  同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同
的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最
小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

Input

  第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人
员维修第i辆车需要用的时间T。

Output

  最小平均等待时间,答案精确到小数点后2位。

Sample Input

2 2
3 2
1 4

Sample Output

1.50

HINT

数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)





一道很好的费用流……
假设某个工人u修车的集合是固定的{A1..An}
那么顺序很关键,
对于倒数第x个修的车Ax,它对于u所拖住的时间是(u修Ax的时间)*x
这个应该很明显。
每个工人都是这样的。

我们把工人裂点,裂成n个,u1,u2……un,
分别表示对于工人u,修倒数第一个车的工人是u1,倒数第二个的是u2……
然后工人向对应车连边,费用就是上面所说的拖住的时间,流量为1。
源点向所有工人连边,所有车向汇点连边,费用都是0。
因为首先车要都修了,就是最大流;
同时拖住的总时间最少(工人和工人之间其实是独立的),
所以直接跑费用流就可以了……




#include<bits/stdc++.h>
using namespace std;
int read(){
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
const int 
	N=65,M=15,
	INF=10000000;
int n,m,Ecnt;
int source,sink;
int Time[N][M];
int pre[N*M],dis[N*M];
bool vis[N*M];
struct Edge{
	int next,to,from,C,cost;
}E[(N*N*M+N)<<1];int head[N*M];
void add(int u,int v,int C,int co){
	E[Ecnt].next=head[u];
	E[Ecnt].to=v;
	E[Ecnt].from=u;
	E[Ecnt].C=C,E[Ecnt].cost=co;
	head[u]=Ecnt++;
}
queue<int> Q;
bool SPFA(int start,int end){
	memset(dis,100,sizeof(dis));
	memset(pre,0,sizeof(pre));
	int inf=dis[0];
	vis[start]=1,dis[start]=0;
	while (!Q.empty()) Q.pop();

	Q.push(start);
	while (!Q.empty()){
		int u=Q.front();Q.pop();
		vis[u]=0;
		for (int i=head[u];~i;i=E[i].next)
			if (E[i].C){
				int v=E[i].to;
				if (dis[u]+E[i].cost<dis[v]){
					dis[v]=dis[u]+E[i].cost;
					pre[v]=i;
					if (!vis[v]) Q.push(v),vis[v]=1;
				}
			}
	}
	return dis[end]!=inf;
}
int MCMF(int start,int end){
	int f,Cost=0;
	while (SPFA(start,end)){
		f=INF;
		for (int i=end;i!=start;i=E[pre[i]].from)
			f=min(f,E[pre[i]].C);
		for (int i=end;i!=start;i=E[pre[i]].from)
			E[pre[i]].C-=f,E[pre[i]^1].C+=f;
		Cost+=dis[end];
	}
	return Cost;
}
void build(){
	source=n*m+n+1,sink=n*m+n+2;
	Ecnt=0;int worker,num;
	memset(head,255,sizeof(head));

	for (int i=1;i<=n*m;i++){
		worker=!(i%n)?i/n:i/n+1;
		num=i-(worker-1)*n;
		add(source,i,1,0),add(i,source,0,0);
		for (int j=1;j<=n;j++){
			add(i,n*m+j,1,Time[j][worker]*num),
			add(n*m+j,i,0,-Time[j][worker]*num);
		}
	}
	for (int i=1;i<=n;i++)
		add(n*m+i,sink,1,0),add(sink,n*m+i,0,0);
}
int main(){
	m=read(),n=read();
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++) Time[i][j]=read();
	build();

	printf("%.2lf\n",(double)MCMF(source,sink)/(double)n);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值