Description
潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。
Input
输入文件共M + 2 + NFish行。第一行包含五个正整数N,M,Start,End和K,分别表示石墩数目、石桥数目、Start石墩和End石墩的编号和一条路线所需的单位时间。石墩用0到N–1的整数编号。第2到M + 1行,给出石桥的相关信息。每行两个整数x和y,0 ≤ x, y ≤ N–1,表示这座石桥连接着编号为x和y的两座石墩。第M + 2行是一个整数NFish,表示食人鱼的数目。第M + 3到M + 2 + NFish行,每行给出一条食人鱼的相关信息。每行的第一个整数是T,T = 2,3或4,表示食人鱼的运动周期。接下来有T个数,表示一个周期内食人鱼的行进路线。 如果T=2,接下来有2个数P0和P1,食人鱼从P0到P1,从P1到P0,……; 如果T=3,接下来有3个数P0,P1和P2,食人鱼从P0到P1,从P1到P2,从P2到P0,……; 如果T=4,接下来有4个数P0,P1,P2和P3,食人鱼从P0到P1,从P1到P2,从P2到P3,从P3到P0,……。豆豆出发的时候所有食人鱼都在自己路线上的P0位置,请放心,这个位置不会是Start石墩。
Output
输出路线的种数,因为这个数可能很大,你只要输出该数除以10000的余数就行了。 【约定】 1 ≤ N ≤ 50 1 ≤ K ≤ 2,000,000,000 1 ≤ NFish ≤ 20
Sample Input
6 8 1 5 3
0 2
2 1
1 0
0 5
5 1
1 4
4 3
3 5
1
3 0 5 1
Sample Output
2
【样例说明】
时刻 0 1 2 3
食人鱼位置 0 5 1 0
路线一 1 2 0 5
路线二 1 4 3 5
HINT
传送门
刷水……
会矩阵乘法trick的应该都会吧。。
也就是说对于一个矩阵A,A[x][y]=k表示x连到y的边数
计算
An
后,A[x][y]就表示x到y的方案数。
那么这题就是多了个食人鱼,使得邻接矩阵每次不太一样。
但是看到食人鱼是有周期的,而且只有2,3,4
那么意味着,最多12次,之后就会重复了。
那么只要求出12个不同的邻接矩阵P[1..12],
然后令A=P[1]*……P[12],
计算
An/12
,然后n%12的部分另外计算即可。
……一开始竟然以为矩阵乘法有交换性。。。真是zz了= =
#include<bits/stdc++.h>
using namespace std;
const int
N=55,
mod=10000;
int n,m,nfish;
int T[25],P[25][4],x[N*N],y[N*N];
bool flag[N];
struct Matrix{
int val[N][N];
Matrix(){memset(val,0,sizeof(val));}
Matrix operator *(Matrix x){
Matrix c;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
for (int k=1;k<=n;k++)
c.val[i][j]=(c.val[i][j]+val[i][k]*x.val[k][j]%mod)%mod;
return c;
}
}ALL,part[12];
Matrix ksm(Matrix a,int y){
Matrix z;
for (int i=1;i<=n;i++) z.val[i][i]=1;
while (y){
if (y&1) z=z*a;
y>>=1;a=a*a;
}
return z;
}
void Pre(){
for (int i=1;i<=n;i++) ALL.val[i][i]=1;
for (int i=0;i<12;i++){
memset(flag,0,sizeof(flag));
for (int j=1;j<=nfish;j++) flag[P[j][i%T[j]]]=1;
for (int j=1;j<=m;j++){
if (!flag[x[j]]) part[i].val[y[j]][x[j]]++;
if (!flag[y[j]]) part[i].val[x[j]][y[j]]++;
}
for (int j=1;j<=n;j++)
if (flag[j]){
for (int k=1;k<=n;k++)
part[i].val[k][j]=0;
}
}
for (int i=1;i<12;i++) ALL=ALL*part[i];
ALL=ALL*part[0];
}
int main(){
int Start,End,K;
scanf("%d%d%d%d%d",&n,&m,&Start,&End,&K);
Start++,End++;
for (int i=1;i<=m;i++)
scanf("%d%d",&x[i],&y[i]),x[i]++,y[i]++;
scanf("%d",&nfish);
for (int i=1;i<=nfish;i++){
scanf("%d",&T[i]);
for (int j=0;j<T[i];j++)
scanf("%d",&P[i][j]),P[i][j]++;
}
Pre();
ALL=ksm(ALL,K/12);
int x=K%12;
if (x)
for (int i=1;i<=x;i++) ALL=ALL*part[i];
printf("%d\n",ALL.val[Start][End]);
return 0;
}