bzoj 4408 [Fjoi 2016]神秘数 主席树

Description

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

Input

第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。

Output

对于每个询问,输出一行对应的答案。

Sample Input

5

1 2 4 9 10

5

1 1

1 2

1 3

1 4

1 5
Sample Output

2

4

8

8

8
HINT

对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9


传送门
这题厉害了……
对于一个序列,假设我们把它排序了,当前位置为x,之前的前缀和是S,
那么显然S+1 < x的时候,S+1就是神秘数,不然就可以后推。
然而这题是多个区间询问……于是就不会啦= v =

题解还是挺神的。。
对于一个序列,除了排序还可以酱紫做。。
首先设置一个ans=1,
每次求出<=ans的所有数的和,假设这个和为get,
那么当get < ans的时候,ans就是解了,
不然就把ans更新为get+1.
区间求<=ans的数的和?用个主席树就ok了。。
而比较nb的是这个循环的次数……
次数似乎不会太多……听说是 log(a[i]) 次?
太神啦。。

#include<bits/stdc++.h>
using namespace std;
const int 
    N=100005;
int n,Tcnt,root[N],a[N];
struct CT{int l,r,num;}ct[N*40];
void insert(int &u,int num,int L,int R){
    ct[++Tcnt]=ct[u];
    u=Tcnt,ct[u].num+=num;
    if (L==R) return;
    int mid=(L+R)>>1;
    if (num<=mid) insert(ct[u].l,num,L,mid);
        else insert(ct[u].r,num,mid+1,R);
}
int query(int ll,int rr,int num,int L,int R){
    if (L==R) return ct[rr].num-ct[ll].num;
    int mid=(L+R)>>1;
    if (num<=mid) return query(ct[ll].l,ct[rr].l,num,L,mid);
        else return ct[ct[rr].l].num-ct[ct[ll].l].num+
            query(ct[ll].r,ct[rr].r,num,mid+1,R);
}
int main(){
    scanf("%d",&n);
    int tot=0;
    for (int i=1;i<=n;i++)
        scanf("%d",&a[i]),tot+=a[i];
    root[0]=0;
    for (int i=1;i<=n;i++)
        root[i]=root[i-1],
        insert(root[i],a[i],1,tot);
    int Q,l,r;scanf("%d",&Q);
    while (Q--){
        scanf("%d%d",&l,&r);
        int ans=1,get;
        while (1){
            get=query(root[l-1],root[r],ans,1,tot);
            if (get<ans) break;
            ans=get+1;
        }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值