基于HSV色域分割+Canny的特征圆检测算法实现(单张图片检测+realsense相机实时检测)


前言

本科毕设设计的一种传统视觉方案完成特征圆检测方法,仅基于OpenCV实现,可以完成一张图片的检测,也可以搭配相机进行实时的检测,已在Windows 10及Ubuntu 16.04下运行通过。

一、效果展示

单张图片的检测
单张图片的检测
使用realsense的实时检测,可以获取圆心的三维坐标。
在这里插入图片描述
在这里插入图片描述

二、算法流程

  1. 将RGB图片转换到HSV色域,去除背景干扰。
  2. 图像滤波处理。
  3. Canny算法边缘检测。
  4. 对检测到的轮廓边缘进行椭圆拟合,使用圆度值以及长短轴的值进行目标圆的筛选。

三、环境配置

基本只依赖numpy和cv2。

import numpy as np
import cv2

四、部分代码解释

4.1 前置滑块

设计滑块便于后面实时调试HSV、半径等参数。

def nothing(*arg):
    pass
para = (0, 127, 149, 255, 255, 255, 0, 50)
# lowHue lowSat lowVal highHue highSat highVal minRadius maxRadius
cv2.namedWindow('Trackbar')
cv2.resizeWindow('Trackbar', 400, 400)
cv2.createTrackbar('lowHue', 'Trackbar', para[0], 255, nothing)
cv2.createTrackbar('lowSat', 'Trackbar', para[1], 255, nothing)
cv2.createTrackbar('lowVal', 'Trackbar', para[2], 255, nothing)
cv2.createTrackbar('highHue', 'Trackbar', para[3], 255, nothing)
cv2.createTrackbar('highSat', 'Trackbar', para[4], 255, nothing)
cv2.createTrackbar('highVal', 'Trackbar', para[5], 255, nothing)
cv2.createTrackbar('minRadius', 'Trackbar', para[6], 500, nothing)
cv2.createTrackbar('maxRadius', 'Trackbar', para[7], 500, nothing)

4.2 图形预处理

    frame = cv2.imread("./c1.jpg")
    lowHue = cv2.getTrackbarPos('lowHue', 'Trackbar')
    lowSat = cv2.getTrackbarPos('lowSat', 'Trackbar')
    lowVal = cv2.getTrackbarPos('lowVal', 'Trackbar')
    highHue = cv2.getTrackbarPos('highHue', 'Trackbar')
    highSat = cv2.getTrackbarPos('highSat', 'Trackbar')
    highVal = cv2.getTrackbarPos('highVal', 'Trackbar')
    minRadius = cv2.getTrackbarPos('minRadius', 'Trackbar')
    maxRadius = cv2.getTrackbarPos('maxRadius', 'Trackbar')
    print("para is ",[lowHue, lowSat, lowVal, highHue, highSat, highVal, minRadius, maxRadius])
    # Show the original image.
    cv2.namedWindow('frame', 0)
    cv2.imshow('frame', frame)
    # Blur methods available, comment or uncomment to try different blur methods.
    frame = cv2.medianBlur(frame, 5)
    # Convert the frame to HSV colour model.
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # HSV values to define a colour range.
    colorLow = np.array([lowHue, lowSat, lowVal])
    colorHigh = np.array([highHue, highSat, highVal])
    mask = cv2.inRange(hsv, colorLow, colorHigh)
    kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernal)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernal)
    result = cv2.bitwise_and(frame, frame, mask=mask)
    # Show final output image
    cv2.namedWindow('afterHSVmask', 0)
    cv2.imshow('afterHSVmask', result)
    gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
    imgray = cv2.Canny(result, 600, 100, 3)  # Canny
    cv2.namedWindow('canny', 0)
    cv2.imshow('canny', imgray)
    ret, thresh = cv2.threshold(imgray, 127, 255, cv2.THRESH_BINARY)

4.3 椭圆检测

原理是使用findContours函数寻找所有的轮廓,在所有的轮廓中拟合椭圆,根据圆度和长短轴的限制进行筛选。

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  # contours为轮廓集,可以计算轮廓的长度、面积等
    for cnt in contours:
        if len(cnt) > 50:
            ell = cv2.fitEllipse(cnt)  # 拟合椭圆 ell = [ center(x, y) , long short (a, b), angle ]
            a = ell[1][0]  # long
            b = ell[1][1]  # short
            x = int(ell[0][0])
            y = int(ell[0][1])
            if (b / a) < 1.2 and a > minRadius and b > minRadius and a < maxRadius and b < maxRadius:
                frame = cv2.ellipse(frame, ell, (0, 0, 200), 2)
                cv2.circle(frame, (x, y), 2, (255, 255, 255), 3)
                cv2.putText(frame, str((x, y, (a + b) // 2)), (x + 20, y + 10), 0, 1,
                            [225, 255, 255], thickness=1, lineType=cv2.LINE_AA)

五、完整代码

完整代码已上传GitHub,附带一些图片。
https://github.com/Thinkin99/HSV_Canny_Circle_Detection

5.1 对于一张图片的检测

import numpy as np
import cv2

def nothing(*arg):
    pass

para = (0, 127, 149, 255, 255, 255, 0, 50)
# lowHue lowSat lowVal highHue highSat highVal minRadius maxRadius
cv2.namedWindow('Trackbar')
cv2.resizeWindow('Trackbar', 400, 400)
cv2.createTrackbar('lowHue', 'Trackbar', para[0], 255, nothing)
cv2.createTrackbar('lowSat', 'Trackbar', para[1], 255, nothing)
cv2.createTrackbar('lowVal', 'Trackbar', para[2], 255, nothing)
cv2.createTrackbar('highHue', 'Trackbar', para[3], 255, nothing)
cv2.createTrackbar('highSat', 'Trackbar', para[4], 255, nothing)
cv2.createTrackbar('highVal', 'Trackbar', para[5], 255, nothing)
cv2.createTrackbar('minRadius', 'Trackbar', para[6], 500, nothing)
cv2.createTrackbar('maxRadius', 'Trackbar', para[7], 500, nothing)

while True:
    frame = cv2.imread("./c1.jpg")
    lowHue = cv2.getTrackbarPos('lowHue', 'Trackbar')
    lowSat = cv2.getTrackbarPos('lowSat', 'Trackbar')
    lowVal = cv2.getTrackbarPos('lowVal', 'Trackbar')
    highHue = cv2.getTrackbarPos('highHue', 'Trackbar')
    highSat = cv2.getTrackbarPos('highSat', 'Trackbar')
    highVal = cv2.getTrackbarPos('highVal', 'Trackbar')
    minRadius = cv2.getTrackbarPos('minRadius', 'Trackbar')
    maxRadius = cv2.getTrackbarPos('maxRadius', 'Trackbar')
    print("para is ",[lowHue, lowSat, lowVal, highHue, highSat, highVal, minRadius, maxRadius])
    # Show the original image.
    cv2.namedWindow('frame', 0)
    cv2.imshow('frame', frame)
    # Blur methods available, comment or uncomment to try different blur methods.
    frame = cv2.medianBlur(frame, 5)
    # Convert the frame to HSV colour model.
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # HSV values to define a colour range.
    colorLow = np.array([lowHue, lowSat, lowVal])
    colorHigh = np.array([highHue, highSat, highVal])
    mask = cv2.inRange(hsv, colorLow, colorHigh)
    kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernal)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernal)
    result = cv2.bitwise_and(frame, frame, mask=mask)
    # Show final output image
    cv2.namedWindow('afterHSVmask', 0)
    cv2.imshow('afterHSVmask', result)
    gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
    imgray = cv2.Canny(result, 600, 100, 3)  # Canny
    cv2.namedWindow('canny', 0)
    cv2.imshow('canny', imgray)
    ret, thresh = cv2.threshold(imgray, 127, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  # contours为轮廓集,可以计算轮廓的长度、面积等
    for cnt in contours:
        if len(cnt) > 50:
            ell = cv2.fitEllipse(cnt)  # 拟合椭圆 ell = [ center(x, y) , long short (a, b), angle ]
            a = ell[1][0]  # long
            b = ell[1][1]  # short
            x = int(ell[0][0])
            y = int(ell[0][1])
            if (b / a) < 1.2 and a > minRadius and b > minRadius and a < maxRadius and b < maxRadius:
                frame = cv2.ellipse(frame, ell, (0, 0, 200), 2)
                cv2.circle(frame, (x, y), 2, (255, 255, 255), 3)
                cv2.putText(frame, str((x, y, (a + b) // 2)), (x + 20, y + 10), 0, 1,
                            [225, 255, 255], thickness=1, lineType=cv2.LINE_AA)
    cv2.namedWindow("circle_detect", 0)
    cv2.imshow("circle_detect", frame)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break
cv2.destroyAllWindows()

5.2 使用Realsense相机进行实时检测

因为已经毕业了, 手上没有Realsense,云改了一下代码,没有实际跑过,可能会有bug,相较于单张图片的检测多了深度值的检测。

from __future__ import division
import numpy as np
import pyrealsense2 as rs
# sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages')
import cv2

def nothing(*arg):
        pass
 

para = (0, 127, 149, 255, 255, 255, 0, 50)
# lowHue lowSat lowVal highHue highSat highVal minRadius maxRadius
cv2.namedWindow('Trackbar')
cv2.resizeWindow('Trackbar', 500, 400)
cv2.createTrackbar('lowHue', 'Trackbar', para[0], 255, nothing)
cv2.createTrackbar('lowSat', 'Trackbar', para[1], 255, nothing)
cv2.createTrackbar('lowVal', 'Trackbar', para[2], 255, nothing)
cv2.createTrackbar('highHue', 'Trackbar', para[3], 255, nothing)
cv2.createTrackbar('highSat', 'Trackbar', para[4], 255, nothing)
cv2.createTrackbar('highVal', 'Trackbar', para[5], 255, nothing)
cv2.createTrackbar('minRadius', 'Trackbar', para[6], 500, nothing)
cv2.createTrackbar('maxRadius', 'Trackbar', para[7], 500, nothing)

def get_aligned_images():
    frames = pipeline.wait_for_frames()  # 等待获取图像帧
    aligned_frames = align.process(frames)  # 获取对齐帧
    aligned_depth_frame = aligned_frames.get_depth_frame()  # 获取对齐帧中的depth帧
    color_frame = aligned_frames.get_color_frame()  # 获取对齐帧中的color帧

    ############### 相机参数的获取 #######################
    intr = color_frame.profile.as_video_stream_profile().intrinsics  # 获取相机内参
    depth_intrin = aligned_depth_frame.profile.as_video_stream_profile(
    ).intrinsics  # 获取深度参数(像素坐标系转相机坐标系会用到)

    depth_image = np.asanyarray(aligned_depth_frame.get_data())  # 深度图(默认16位)
    depth_image_8bit = cv2.convertScaleAbs(depth_image, alpha=0.03)  # 深度图(8位)
    depth_image_3d = np.dstack(
        (depth_image_8bit, depth_image_8bit, depth_image_8bit))  # 3通道深度图
    color_image = np.asanyarray(color_frame.get_data())  # RGB图

    # 返回相机内参、深度参数、彩色图、深度图、齐帧中的depth帧
    return intr, depth_intrin, color_image, depth_image, aligned_depth_frame
pipeline = rs.pipeline()  # 定义流程pipeline
config = rs.config()  # 定义配置config
# config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 15)
# config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 15)
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
profile = pipeline.start(config)  # 流程开始
align_to = rs.stream.color  # 与color流对齐
align = rs.align(align_to)


while True:
    # Get HSV values from the GUI sliders.
    intr, depth_intrin, color_image, depth_image, aligned_depth_frame = get_aligned_images()  # 获取对齐的图像与相机内参
    if not depth_image.any() or not color_image.any():
        continue
    lowHue = cv2.getTrackbarPos('lowHue', 'Trackbar')
    lowSat = cv2.getTrackbarPos('lowSat', 'Trackbar')
    lowVal = cv2.getTrackbarPos('lowVal', 'Trackbar')
    highHue = cv2.getTrackbarPos('highHue', 'Trackbar')
    highSat = cv2.getTrackbarPos('highSat', 'Trackbar')
    highVal = cv2.getTrackbarPos('highVal', 'Trackbar')
    minRadius = cv2.getTrackbarPos('minRadius', 'Trackbar')
    maxRadius = cv2.getTrackbarPos('maxRadius', 'Trackbar')
    print("para is ", [lowHue, lowSat, lowVal, highHue, highSat, highVal, minRadius, maxRadius])
    frame=color_image
    # Show the original image.
    cv2.namedWindow('frame',0)
    cv2.imshow('frame', frame)
    # Blur methods available, comment or uncomment to try different blur methods.
    frame = cv2.medianBlur(frame, 9)
    # Convert the frame to HSV colour model.
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    # HSV values to define a colour range.
    colorLow = np.array([lowHue,lowSat,lowVal])
    colorHigh = np.array([highHue,highSat,highVal])
    mask = cv2.inRange(hsv, colorLow, colorHigh)
    kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernal)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernal)
    result = cv2.bitwise_and(frame, frame, mask = mask)
    # Show final output image
    cv2.namedWindow('afterHSVmask',0)
    cv2.imshow('afterHSVmask', result)
    gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
    imgray = cv2.Canny(result, 600, 100, 3)  # Canny
    cv2.namedWindow('canny',0)
    cv2.imshow('canny',imgray)
    ret, thresh = cv2.threshold(imgray, 127, 255, cv2.THRESH_BINARY)
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)  # contours为轮廓集,可以计算轮廓的长度、面积等
    list_xy=[]
    for cnt in contours:
        if len(cnt) > 50:
            ell = cv2.fitEllipse(cnt)  # 拟合椭圆 ellipse = [ center(x, y) , long short (a, b), angle ]
            a = ell[1][0]
            b = ell[1][1]
            x = int(ell[0][0])
            y = int(ell[0][1])
            if (b / a) < 1.2 and a > minRadius and b > minRadius and a < maxRadius and b < maxRadius:
                frame = cv2.ellipse(frame, ell, (0, 0, 200), 2)
                cv2.circle(frame, (x, y), 2, (255, 255, 255), 3)
                cv2.putText(frame, str((x, y,(a+b)//2)), (x + 20, y + 10), 0, 1,
                            [225, 255, 255], thickness=1, lineType=cv2.LINE_AA)
                dis = aligned_depth_frame.get_distance(x, y)
                if dis == 0:
                    dis = aligned_depth_frame.get_distance(100, 100)#如果检测不到距离,就取(100100)像素点的距离.
                camera_xyz = rs.rs2_deproject_pixel_to_point(
                    depth_intrin, (x, y), dis)  # 计算相机坐标系的xyz
                camera_xyz = np.round(np.array(camera_xyz), 3)  # 转成3位小数
                camera_xyz = camera_xyz.tolist()
                cv2.putText(frame, str(camera_xyz), (x - 50, y + 50), 0, 1,
                            [225, 255, 255], thickness=1, lineType=cv2.LINE_AA)  # 标出坐标
    cv2.namedWindow("circle_detect",0)
    cv2.imshow("circle_detect", frame)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

cv2.destroyAllWindows()
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fr0mdeepsea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值