三步教你在linux上本地部署DeepSeek-R1

在这里插入图片描述

一、前言: 本地配置说明

根据配置和需求部署相应规模的DeepSeek-R1

DeepSeek-R1系列模型的详细配置和适用场景总结:

模型规模参数量FP16显存需求最低显卡配置CPU最低配置特点适用场景
DeepSeek-R1-1.5B1.5B3GBRTX 3050(或无需显卡,推理会慢些)4核处理器、8G内存轻量级模型,参数量少,模型规模小适用于轻量级任务,如短文本生成、基础问答等
DeepSeek-R1-7B7B14GBRTX 30908核处理器、16G内存,Ryzen7或更高平衡型模型,性能较好,硬件需求适中适合中等复杂度任务,如文案撰写、表格处理、统计分析等
DeepSeek-R1-14B14B28GBA6000i9-13900K或更高、32G内存高性能模型,擅长复杂的任务,如数学推理、代码生成可处理复杂任务,如长文本生成、数据分析等
DeepSeek-R1-32B32B64GB2×A100-40GXeon 8核、128GB内存或更高专业级模型,性能强大,适合高精度任务适合超大规模任务,如语言建模、大规模训练、金融预测等
DeepSeek-R1-70B70B140GB4×A100/H100-80GXeon 8核、128GB内存或更高顶级模型,性能最强,适合大规模计算和高复杂任务适合高精度专业领域任务,比如多模态任务预处理
DeepSeek-R1-671B671B512GB8×A100/H100-80G64核、512GB或更高超大规模模型,性能卓越,推理速度快,适合极高精度需求适合国家级 / 超大规模 AI 研究,如气候建模等,以及通用人工智能探索

关键点总结

  1. 模型规模与参数量:从1.5B到671B,参数量逐渐增加,模型复杂度也随之提升。
  2. 显存需求:FP16显存需求从3GB到512GB不等,显存需求与模型规模成正比。
  3. 硬件配置
    • 显卡:从RTX 3050到8×A100/H100-80G,显卡性能需求随模型规模增加而显著提升。
    • CPU:从4核处理器到64核处理器,CPU性能需求也随模型规模增加而提升。
  4. 特点
    • 轻量级模型适合简单任务,顶级模型适合高精度、高复杂度任务。
    • 超大规模模型(如671B)适合国家级或超大规模AI研究。
  5. 适用场景
    • 轻量级模型适用于基础任务,如短文本生成、基础问答。
    • 中大型模型适用于中等复杂度任务,如文案撰写、表格处理、统计分析。
    • 顶级模型适用于高精度专业领域任务,如多模态任务预处理、国家级AI研究等。

根据任务需求和硬件条件,选择合适的模型可以最大化效率和性能。

二、正式开始部署

这里基于Xinference框架部署
Xinference:是一个性能强大且功能全面的分布式推理框架。可用于大语言模型(LLM),语音识别模型,多模态模型等各种模型的推理。
参考:https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html

2.1 第一步:安装conda环境

  1. linux命令行界面下载miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
  1. 安装miniconda
sh Miniconda3-latest-Linux-x86_64.sh
  1. 验证是否成功安装
conda --version

2.2 第二步:安装指定Xinference依赖

  1. 创建conda环境
conda create -n xinference python=3.11
  1. 激活conda环境
conda activate xinference
  1. 安装DeepSeek所需要的Xinference依赖
pip install "xinference[vllm]"

注:conda命令详解传统门,您需要可点击跳转

2.3 第三步:直接启动

  1. 在环境中输入:xinference-local --host 0.0.0.0 --port 9997
    在这里插入图片描述

  2. 在浏览器中输入:http://127.0.0.0:9997/
    其中127.0.0.0是你的服务器的ip地址,注意替换

  3. 选择DeepSeek模型
    在这里插入图片描述

  4. 启动DeepSeek模型
    在这里插入图片描述
    注意:max_model_len设置,图中标明,这里强调一下,如果跟我一样的配置,可以这样设置,不然就先不管,根据报错信息设置最大值,如果问题,可以留言讨论。

  5. 进入DeepSeek界面

等待片刻,如果启动成功后,应该是这样的
在这里插入图片描述

点击后进入页面:
在这里插入图片描述
如此,大功告成~ Enjoy

三、总结

最后我们再总结一下拢共哪三步:

  1. 创建conda环境
  2. 安装Xinference所依赖的环境
  3. 页面上配置并部署DeepSeek

好了,如此完成本地部署DeepSeek-R1,是不是很简单,如果还有疑问,或者其他有关DeepSeek的问题,欢迎留言讨论,这里是ThomasCTR,我们下篇文章见~

欢迎关注ThomasCai

O n e   p e r s o n   g o   f a s t e r ,   a   g r o u p   o f   p e o p l e   c a n   g o   f u r t h e r {One\ person\ go\ faster,\ a\ group\ of\ people\ can\ go\ further} One person go faster, a group of people can go further

### DeepSeek-R3 本地部署程和配置指南 对于希望在本地环境中部署 DeepSeek-R3 的用户来说,理解并遵循一系列特定步骤至关重要。虽然当前提供的参考资料主要针对 DeepSeek-R1 版本[^1],但这些指导原则同样适用于 R3 版本。 #### 准备工作环境 为了确保顺利安装,建议先确认操作系统兼容性和硬件需求。通常情况下,Linux 和 macOS 是首选平台;Windows 用户可能需要借助 WSL (Windows Subsystem for Linux) 来获得最佳体验。此外,拥有 NVIDIA GPU 可显著加速模型运算效率[^2]。 #### 安装依赖项 在正式开始之前,需预先设置好 Python 环境以及必要的库文件。这一步骤可以通过 Anaconda 或者 Miniconda 实现虚拟环境管理,并利用 pip 工具来安装额外所需的软件包: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117/ ``` 上述命令假设读者正在使用 CUDA 11.7 版本的 PyTorch 库。如果设备不具备 Nvidia 显卡,则应选择 CPU-only 版本替代之。 #### 下载预训练模型 获取官方发布的 DeepSeek-R3 预训练权重是必不可少的一环。访问项目主页或 GitHub 发布页面下载最新版本的 checkpoint 文件。注意保存路径以便后续加载时引用。 #### 启动服务端口 完成前期准备工作之后,即可执行如下指令启动服务器实例: ```bash ollama run deepseek-r3:latest --device cuda --quant 4bit ``` 此命令指定采用 CUDA 加速方式运行量化后的四比特精度模型。对于资源有限的情况,还可以考虑调整 `--device` 参数至 cpu 模式以适应不同计算能力的需求[^3]。 #### 测试与验证 一旦成功激活 API 接口后,便能够通过 HTTP 请求向其发送自然语言处理任务。下面给出一段简单的 Python 脚本来演示这一过程: ```python import requests url = "http://localhost:8000/v1/chat/completions" data = { 'prompt': '你好啊', 'max_tokens': 50, } response = requests.post(url, json=data) print(response.json()) ``` 这段代码片段展示了如何构建 POST 请求并与本地主机上的 DeepSeek-R3 进行对话交流。实际应用中可根据具体业务场景定制化修改参数设定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas_Cai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值