- 博客(167)
- 收藏
- 关注
原创 时序预测力作PatchMixer论文理解
本文提出PatchMixer模型,这是一种基于深度可分离卷积和补丁混合架构的时间序列预测方法。模型通过将时间序列划分为补丁进行处理,采用双头预测机制分别建模线性和非线性模式。训练流程包括数据准备、模型建立、损失定义、参数优化等步骤,关键超参数包括补丁大小、学习率、批量大小等。预测过程通过补丁划分、嵌入和深度可分离卷积处理实现。实验采用7:1:2的数据划分比例,输入序列长度为96时,模型可预测未来96个时间点。结果表明PatchMixer能有效捕捉时间序列特征,在预测任务中展现出优良性能。代码已在GitHub
2025-05-28 17:46:46
976
原创 本地部署dify爬坑指南
本文介绍了Dify平台的本地部署流程及注意事项。主要内容包括:1)Docker Compose安装指南;2)解决Docker网络问题的详细步骤,包括镜像源配置和DNS设置;3)Dify本地部署命令;4)模型部署方法,建议在与Dify网络互通的环境中运行。文章提供了完整的操作流程和参考链接,帮助用户避免常见安装问题,实现Dify平台的顺利部署和使用。
2025-05-27 16:33:26
911
原创 Sentence-BERT论文解析
标准的三段式:目前的方法弊端——这篇文章的提出——这篇文章方法的效果目前的方法弊端目前的方法:BERT(Devlin等人,2018)和RoBERTA(Liu et al,2019)在语义文本相似性(STS)等双对回归任务上设置了最先进的性能。弊端:然而,它需要将两个句子都输入到网络中,这导致了巨大的计算开销:在10000个句子的集合中找到最相似的一对需要大约5000万次推理计算(约65小时)BERT的构造使其不适合语义相似性搜索以及聚类等无监督任务。句子的输入导致巨大的计算开销。
2025-04-06 16:49:15
874
1
原创 Bert论文解析
引入一种新的语言表示模型BERT,它源于Transformers的双向编码器表示。BEncoderRTBERT的原理简述——便捷性BERT旨在通过联合调节所有层中的左右上下文,从未标记文本中预训练深度双向表示。因此,只需一个额外的输出层即可对预训练的BERT模型进行微调,为各种任务(例如问答和语言推理)创建最先进的模型,而无需对特定任务的架构进行实质性修改。BERT的效果。
2025-04-06 16:47:36
1095
原创 Python的线程、进程与协程
进程:进程是操作系统分配资源的基本单位,每个进程都有独立的内存空间,包含代码、数据和系统资源。进程之间相互隔离,一个进程崩溃不会影响其他进程。线程:线程是进程内的执行单元,一个进程可以包含多个线程。线程共享进程的内存空间和资源,因此线程间的通信比进程间更高效,但也更容易出现数据竞争等问题。
2025-03-25 19:29:55
1140
原创 批归一化(Batch Normalization)与层归一化(Layer Normalization)的区别与联系
与 Batch Normalization(批归一化)的目标类似,都是为了加速训练并提高模型性能,但它们的归一化方式和应用场景有所不同。Layer Normalization 是对单个样本的所有特征进行归一化,而不是像 Batch Normalization 那样对整个 mini-batch 的每个特征进行归一化。Batch Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。Layer Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。
2025-03-25 19:27:11
948
原创 三步教你在linux上本地部署DeepSeek-R1
云端API太贵?想保护自己的数据?没问题,三步教你本地部署DeepSeek,敢不敢挑战?以linux系统为例,windows也是同样的流程。
2025-02-23 11:36:49
2763
原创 多标签分类SOTA | ADDS论文解读
《Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-Textual Features》论文要点笔记
2024-12-11 18:54:25
1927
原创 pytorch模型转onnx的动态batch转换说明
将PyTorch模型(.pth)转换为ONNX格式时,通常需要指定一个batch size。这是因为ONNX模型需要一个固定的输入形状,而批处理大小是输入形状的一部分。
2024-11-08 18:34:50
764
原创 2024最新文字指导图像编辑模型 | Forgedit: Text Guided Image Editing via Learning and Forgetting
在真实或合成图像上进行文本引导的图像编辑,只给定原始图像本身和目标文本提示作为输入,是一项非常普遍和具有挑战性的任务。它需要一个编辑模型来自行估计图像的哪些部分需要编辑,然后。
2024-11-08 18:23:24
1595
原创 Nvidia驱动莫名其妙不好使了?nvidia-smi报错?如何解决?已解决!!
Nvidia驱动莫名其妙不好使了?nvidia-smi报错?如何解决?已解决!!
2024-08-26 19:42:18
1798
4
原创 经典骨干网络结构梳理(包括优缺点、适用场景)
在设计或修改网络时,往往要借鉴以往的经典网络结构,现把近几年经典的网络结构从优点、缺点和适用场景方面总结一下。
2024-08-26 19:36:13
1656
异常检测模型快速训练窗口可视化插件
2024-04-06
TA创建的收藏夹 TA关注的收藏夹
TA关注的人