给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
解法一:用例全部通过,but 超出时间限制
class Solution {
public String longestPalindrome(String s) {
if(s.length() == 1)
return s;
String str = "" + s.charAt(0);
for(int i = 1; i < s.length(); i++) {
for(int j = 0; j < i; j++) {
int l = j;
int r = i;
while(l < r && s.charAt(l) == s.charAt(r)) {
l++;
r--;
}
if(r == (i + j) / 2 && (i+1 - j) > str.length()) {
str = s.substring(j, i+1);
} else {
continue;
}
}
}
return str;
}
}
解法二:解法一的改进版
class Solution {
public String longestPalindrome(String s) {
if(s.length() == 1)
return s;
String str = "" + s.charAt(0);
for(int i = 1; i < s.length(); i++) {
for(int j = 0; j < i+1 - str.length(); j++) { //j到i的距离 > 当前str的长度,如果j到i之间存在回文子串则更新str
int l = j;
int r = i;
while(l < r && s.charAt(l) == s.charAt(r)) {
l++;
r--;
}
if(r == (i + j) / 2) {
str = s.substring(j, i + 1);
} else {
continue;
}
}
}
return str;
}
}
解法三:官方动态规划解法
public class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
boolean[][] dp = new boolean[len][len];
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
char[] charArray = s.toCharArray();
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= len; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < len; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= len) {
break;
}
if (charArray[i] != charArray[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}