python编译神经网络识别mnist数据集,预报准确率很低

博主尝试使用Python实现神经网络识别MNIST数据集,但预测准确率仅为0.092,远低于书中的0.94。代码中包括网络结构初始化、训练过程和误差反向传播。问题可能出在权重初始化、学习率或其他参数上。
摘要由CSDN通过智能技术生成

我自己根据《神经网络与深度学习实战》这本书的第五章写了一个python的程序,来识别mnist数据集,但是最后预报的结果只有0.092,书上却有0.94,我不清楚哪里有问题,希望大佬能指导一下,萌新入坑!

下面是代码

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator,FormatStrFormatter
import matplotlib.pyplot as plt
from numpy import *
from six.moves import xrange

import numpy
import scipy.special

class NeuralNetWork:
    def __init__(self,inputnodes,hiddenodes,outputnodes,learningRate):

        #初始化网络,设置输入层,中间层,输出层的节点数
        self.input_nodes = inputnodes
        self.hidden_nodes = hiddenodes
        self.output_nodes = outputnodes
        self.lr = learningRate

        #初始化权重矩阵,有两个权重矩阵,一个是wih,表示输入层和中间层节点间链路权重形成的矩阵
        #一个是who,表示中间层和输出层间链路权重形成的矩阵
        self.wih = numpy.random.rand(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值