Unyielding will

一只小菜鸟~

NYOJ 91阶乘和

阶乘之和

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
描述

给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为正数)的阶乘之和,如9=1!+2!+3!,如果是,则输出Yes,否则输出No;

输入
第一行有一个整数0<m<100,表示有m组测试数据;
每组测试数据有一个正整数n<1000000;
输出
如果符合条件,输出Yes,否则输出No;
样例输入
2910
样例输出
Yes
No

思路一:搜索

注意这个dfs的理解:每一层调用下一层时候,调用层的值由下面两层决定,根据dfs特点,下一层有正确的上面调用层的值就为true(看成一个普通的函数调用其它两个函数,正确即返回true)

依次类推,在到达搜索最底层的时候,如果最底层有一个是正确的则总的结果就是正确的,即有组合满足阶乘和为n。

这个算法的复杂度很高O(2^n)每层两种情况,直到底层进行判断.

#include<bits/stdc++.h>
using namespace std;

int t,n;
int f[12];
int fac(int n){
	if(n == 0 || n == 1)
		return 1;
	else return n*fac(n-1);
}
bool dfs(int p,int sum){
	if(p == 12){
		return sum == n;
	}
	if(dfs(p+1,sum+f[p]))
		return true;
	if(dfs(p+1,sum))
		return true;

	return false;
}
int main()
	{
		for(int i = 1; i < 12; ++i){
			f[i] = fac(i); 
		}
		scanf("%d",&t);
		while(t--){
			scanf("%d",&n);
			if(dfs(1,0)){
				printf("Yes\n");
			}
			else{
				printf("No\n");
			}	
		}
			
		return 0;	
	} 

思路二 贪心:

其实贪心对于此类问题并不是都对,只是在这种情况下是对的

例如 抛开此题,问给定N 是否是,某些数中的一些数的和

9

1 3 6 7

此时按照这种逻辑 是判断为No的,但是事实上3+6 = 9是可以的

我认为此种方法正确的必要条件是这些数为不同的数量级(当然有些是同一数量级,但是不会形成上述的那种情形)

等 知道具体原理 再来改写。。。

#include<bits/stdc++.h>
using namespace std;

int t,n;
int f[12];
int fac(int n){
	if(n == 0 || n == 1)
		return 1;
	else return n*fac(n-1);
}

int main()
	{
		for(int i = 1; i < 12; ++i){
			f[i] = fac(i); 
		}
		scanf("%d",&t);
		while(t--){
			scanf("%d",&n);
			for(int i = 9; i > 0; --i){//从大数开始,依次比较可以就减去
				if(n >= f[i])
					n -= f[i];
			}
			if(n == 0){
				printf("Yes\n");
			}
			else{
				printf("No\n");
			}	
		}
			
		return 0;	
	} 

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Tianweidadada/article/details/79950785
个人分类: 贪心
上一篇NYOJ 47 贪心 过河问题
下一篇NYOJ 推桌子 220 贪心 + 区间问题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭