本文整理自智能投研技术联盟(ITL)与中国计算机学会(CCF)联合举办的自然语言处理智能技术应用研讨会——虎博科技技术副总裁谭悦关于“语义智能的方法体系及其在金融领域的应用实践”的主题演讲。
导读
语言和文本是人类知识的最大载体,基于自然语言处理技术的语义智能方法体系,在智能搜索和问答、企业知识库加工、产业链图谱构建等方面都发挥了很大的作用,有助于金融机构挖掘业务价值、提升服务质量、提高工作效率。
01 语义智能
释放人类知识价值
语言和文本是人类知识最大的载体,通过NLP技术手段高效挖掘、加工并利用文本数据,为不同领域不同应用场景提供搜索、推荐、监控、推理、分析,最终实现决策智能,这是语义智能的核心。
虎博科技技术副总裁谭悦具体而言,语义智能的方法体系分为四个部分:
数据层——对全网多源异构数据(包括传统的结构化数据,半结构化数据和非结构化数据)进行采集加工,构建数据中台能力。
算法层——构建以文档理解、实体关系识别、语义挖掘、情感分析、大数据计算等人工智能模型为核心的算法中台,对各类数据进行加工,提取知识。
语义层——通过实体属性识别、关系抽取、图谱构建等算法将提取的知识构建为半结构化数据,进行推理和分析。
决策层——将加工的知识为不同领域不同应用场景提供搜索、推荐、监控、推理、分析等各类决策辅助工具,帮助人们决策智能。
02 决策智能工具帮助机构降本增效
1、智能搜索和问答系统
从传统的电商搜索引擎到现在的股票交易软件,再到财经咨询终端产品,都有自己的搜索框,服务大量用户的信息检索需求。
但其中大部分的搜索直接采用数据库检索或只能搜索一些特定内容,比如一些券商的App可能只能搜股票代码、股票名称。同时,不同用户的关注点、提问方式都不一样,如此一来,大量的用户信息需求无法得到满足。
虎博针对金融领域的智能搜索方案
虎博基于语义智能推出的智能搜索和问答系统,可以很好地把底层数据和上层用户搜索行为打通。一方面从语义层面解析提炼用户的搜索意图,并通过知识图谱关联,把匹配的数据通过卡片的方式整合到搜索结果页面,返回给用户结构化甚至可视化的答案。
这套系统已经在方正、国信、恒泰等大部分头部券商的App中应用,在可统计范围内,方正证券旗下小方App在使用虎博的智能搜索引擎系统后,信息服务效率至少提升了50%。
目前,虎博智能搜索引擎服务覆盖用户已经超过了2500万。
2、新一代企业知识库
传统的知识库大多只能做到对异构格式的知识文件进行兼容。
但基于语义智能的方法体系,我们可以更进一步,使知识库更加智能、聪明,通过对知识内容解析挖掘语义标签,通过三元组的抽取构建知识图谱,对非结构化的数据进行提炼加工,从而让企业员工更加快速、高效地利用新一代企业知识库获取知识,提高工作效率。
换一个角度,一些特定的工种,比如投资顾问、客户人员,还可以通过新一代企业知识库快速获取知识后,更好地为他们的客户提供服务。
整体而言,虎博希望深入到金融乃至政务、传媒、商贸、能源等垂直领域,利用语义智能的方法体系,将晦涩的NLP技术模型和算法,变成可以帮助从业人员及用户便捷使用的智能决策工具,从而更高效地获取知识、使用知识,实现降本增效。