【每日一题Day25】LC790多米诺和托米诺平铺 | 状态机DP

多米诺和托米诺平铺【LC790】

You have two types of tiles: a 2 x 1 domino shape and a tromino shape. You may rotate these shapes.

img

Given an integer n, return the number of ways to tile an 2 x n board. Since the answer may be very large, return it modulo 109 + 7.

In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.

有两种形状的瓷砖:一种是 2 x 1 的多米诺形,另一种是形如 “L” 的托米诺形。两种形状都可以旋转。

img

给定整数 n ,返回可以平铺 2 x n 的面板的方法的数量。返回对 109 + 7 取模 的值。

平铺指的是每个正方形都必须有瓷砖覆盖。两个平铺不同,当且仅当面板上有四个方向上的相邻单元中的两个,使得恰好有一个平铺有一个瓷砖占据两个正方形。

又是没做过的题型

  • 思路:使用状态机DP,定义第i列瓷砖的四种不同状态【未铺满】,第i列瓷砖的状态可由前一列的瓷砖状态得到,最终dp[i][1]即为前i列瓷砖被铺满的方案数
    • j=0时,代表第i列未被填充
    • j=1时,代表第i列两个方块均被填充
    • j=2时,代表第i列上面的方块被填充
    • j=3时,代表第i列下面的方块被填充

动态规划实现

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j]:当前i-1列铺满时,当前第i列状态为j时的方案数

    j的取值范围为[0,4)

    • j=0时,代表第i列未被填充
    • j=1时,代表第i列两个方块均被填充
    • j=2时,代表第i列上面的方块被填充
    • j=3时,代表第i列下面的方块被填充
  2. 确定递推公式

    • dp[i][0]:前i-1列被填充满,第i列未被填充

      • 只能由dp[i-1][1]转移:在第i-1列竖放2*1的骨牌

      dp[i][0] = dp[i-1][0]

    • dp[i][1]:前i列均被填充

      • 由dp[i-1][0]转移:在第i-1列和第i列横放1*2的骨牌

      • 由dp[i-1][1]转移:在第i-1列和第i列竖放2*1的骨牌

      • 由dp[i-1][2]转移:横放一块L型骨牌

      • 由dp[i-1][3]转移:横放一块L型骨牌

      dp[i][1] =dp[i-1][0]+ dp[i-1][1] + dp[i-1][2] + dp[i-1][3]

    • dp[i][2]:前i-1列被填充满、第i列上面的方块被填充

      • 由dp[i-1][0]转移:横放一块L型骨牌

      • 由dp[i-1][3]转移:横放一块L型骨牌

      dp[i][2] = dp[i-1][0] + dp[i-1][3]

    • dp[i][3]:前i-1列被填充满、第i列下面的方块被填充

      • 由dp[i-1][0]转移:横放一块L型骨牌

      • 由dp[i-1][2]转移:横放一块L型骨牌

      dp[i][3] = dp[i-1][0] + dp[i-1][2]

  3. dp数组如何初始化

    dp[1][0]=1

    dp[1][1]=1

    dp[1][2]=0

    dp[1][3]=0

  4. 确定遍历顺序

    • 正序遍历i
  5. 举例推导dp数组

    dp[i][0]dp[i][1]dp[i][2]dp[i][3]
    11100
    21211
    32522
    451144
  • 代码

    class Solution {
    
        public int numTilings(int n) {
            int MOD = (int)1e9 + 7;
            int[][] dp = new int[n+1][4];
            dp[1][0] = 1;
            dp[1][1] = 1;
            for (int i = 2; i <= n; i++){
                dp[i][0] = dp[i-1][1] % MOD;
                for (int j = 0; j < 4; j++){
                    dp[i][1] = (dp[i][1] + dp[i-1][j]) % MOD;
                }
                dp[i][2] = (dp[i-1][0] + dp[i-1][3]) % MOD;
                dp[i][3] = (dp[i-1][0] + dp[i-1][2]) % MOD;
            }
            return dp[n][1];
        }
    }
    
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( n ) O(n) O(n)
  • 滚动数组优化

    • int a = i & 1

      奇数1 偶数0,确定下标

    • int b = (i - 1) & 1

      奇数0 偶数1

    class Solution {
        public int numTilings(int n) {
            int MOD = (int)1e9 + 7;
            int[][] dp = new int[2][4];
            dp[1][0] = 1;
            dp[1][1] = 1;
            for (int i = 2; i <= n; i++){
                int a = i & 1;// 奇数1 偶数0
                int b = (i-1) & 1;// 奇数0 偶数1
                dp[a][0] = dp[b][1];
                int cur = 0;
                for (int j = 0; j < 4; j++){
                    cur = (cur + dp[b][j]) % MOD;
                }
                dp[a][1] = cur;
                dp[a][2] = (dp[b][0] + dp[b][3]) % MOD;
                dp[a][3] = (dp[b][0] + dp[b][2]) % MOD;
            }
            return dp[n & 1][1];
        }
    }
    
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( 1 ) O(1) O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值