盒子中小球的最大数量【LC1742】
You are working in a ball factory where you have
n
balls numbered fromlowLimit
up tohighLimit
inclusive (i.e.,n == highLimit - lowLimit + 1
), and an infinite number of boxes numbered from1
toinfinity
.Your job at this factory is to put each ball in the box with a number equal to the sum of digits of the ball’s number. For example, the ball number
321
will be put in the box number3 + 2 + 1 = 6
and the ball number10
will be put in the box number1 + 0 = 1
.Given two integers
lowLimit
andhighLimit
, return the number of balls in the box with the most balls.
你在一家生产小球的玩具厂工作,有
n
个小球,编号从lowLimit
开始,到highLimit
结束(包括lowLimit
和highLimit
,即n == highLimit - lowLimit + 1
)。另有无限数量的盒子,编号从1
到infinity
。你的工作是将每个小球放入盒子中,其中盒子的编号应当等于小球编号上每位数字的和。例如,编号
321
的小球应当放入编号3 + 2 + 1 = 6
的盒子,而编号10
的小球应当放入编号1 + 0 = 1
的盒子。给你两个整数
lowLimit
和highLimit
,返回放有最多小球的盒子中的小球数量*。*如果有多个盒子都满足放有最多小球,只需返回其中任一盒子的小球数量。
今天的任务是学数位DP
哈希表
-
思路:使用哈希表记录盒子存储的小球个数,哈希表key为盒子编号,value为盒子中的小球个数
-
实现:HashMap
class Solution { public int countBalls(int lowLimit, int highLimit) { Map<Integer,Integer> numToCount = new HashMap<>(); int maxNum = 0; for (int i = lowLimit; i <= highLimit; i++){ int num = getSum(i); numToCount.put(num,numToCount.getOrDefault(num,0) + 1); maxNum = Math.max(numToCount.get(num), maxNum); } return maxNum; } public int getSum (int n){ int ans = 0; while (n / 10 != 0){ ans += n % 10; n /= 10; } ans += n; return ans; } }
-
复杂度
- 时间复杂度: O ( n l o g h i g h L i m i t ) O(nloghighLimit) O(nloghighLimit),其中 n = h i g h L i m i t − l o w L i m i t + 1 n=highLimit−lowLimit+1 n=highLimit−lowLimit+1
- 空间复杂度: O ( l o g h i g h L i m i t ) O(loghighLimit) O(loghighLimit),假设 h i g h L i m i t highLimit highLimit的十进制位数为 x x x,那么可能使用的盒子编号数目不超过$ 10x$,因此空间复杂度为 O ( l o g h i g h L i m i t ) O(loghighLimit) O(loghighLimit)。
-
-
优化:由于1 <= lowLimit <= highLimit <= 105,因此盒子编号有限,由highLimit的位数决定,因此可以使用数组代替HashMap,优化空间复杂度
class Solution { public int countBalls(int lowLimit, int highLimit) { int m = 0, t = highLimit; while (t > 0) { // 计算highLimit的位数m m++; t /= 10; } int[] numToCount = new int[9 * m + 1]; // 盒子编号不会超过9*m int max = 0; for (int i = lowLimit; i <= highLimit; i++) { int num = getSum(i); max = Math.max(++numToCount[num], max); } return max; } public int getSum (int n){ int ans = 0; while (n / 10 != 0){ ans += n % 10; n /= 10; } ans += n; return ans; } }
-
复杂度
- 时间复杂度: O ( n l o g h i g h L i m i t ) O(nloghighLimit) O(nloghighLimit),其中 n = h i g h L i m i t − l o w L i m i t + 1 n=highLimit−lowLimit+1 n=highLimit−lowLimit+1
- 空间复杂度: O ( 1 ) O(1) O(1)
-
找规律
-
思路:记末尾为9的小球为小球A,末尾为0的小球为小球B,那么可以由小球A对应的箱子编号推出小球B对应的箱子编号,B球所在箱子编号 = A球所在箱子编号 - (9 * [末尾9的个数])+ 1
-
实现
class Solution { public int countBalls(int lowLimit, int highLimit) { int[] resultMap = new int[46]; int firstIndex = 0, result = 0; for (int num = lowLimit; num > 0; num = num / 10) firstIndex += num % 10; resultMap[firstIndex] = 1; // 初始化第一个数字lowLimit所在编号盒子的小球数量 for (int i = lowLimit; i < highLimit; i++) { for (int prevNum = i; prevNum % 10 == 9; prevNum /= 10) // 根据前一个数的末位是否为9,来重新定位下一个数的位置 firstIndex -= 9; // 前移9位 resultMap[++firstIndex]++; } for (int rm : resultMap) result = Math.max(result, rm); return result; } } 作者:爪哇缪斯 链接:https://leetcode.cn/problems/maximum-number-of-balls-in-a-box/solutions/1986523/-by-muse-77-ru13/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
数位DP
还没做过数位DP的,晚点学