过桥的时间【LC2532】
共有
k
位工人计划将n
个箱子从旧仓库移动到新仓库。给你两个整数n
和k
,以及一个二维整数数组time
,数组的大小为k x 4
,其中time[i] = [leftToRighti, pickOldi, rightToLefti, putNewi]
。一条河将两座仓库分隔,只能通过一座桥通行。旧仓库位于河的右岸,新仓库在河的左岸。开始时,所有
k
位工人都在桥的左侧等待。为了移动这些箱子,第i
位工人(下标从 0 开始)可以:
- 从左岸(新仓库)跨过桥到右岸(旧仓库),用时
leftToRighti
分钟。- 从旧仓库选择一个箱子,并返回到桥边,用时
pickOldi
分钟。不同工人可以同时搬起所选的箱子。- 从右岸(旧仓库)跨过桥到左岸(新仓库),用时
rightToLefti
分钟。- 将箱子放入新仓库,并返回到桥边,用时
putNewi
分钟。不同工人可以同时放下所选的箱子。如果满足下面任一条件,则认为工人
i
的 效率低于 工人j
:
leftToRighti + rightToLefti > leftToRightj + rightToLeftj
leftToRighti + rightToLefti == leftToRightj + rightToLeftj
且i > j
工人通过桥时需要遵循以下规则:
- 如果工人
x
到达桥边时,工人y
正在过桥,那么工人x
需要在桥边等待。- 如果没有正在过桥的工人,那么在桥右边等待的工人可以先过桥。如果同时有多个工人在右边等待,那么 效率最低 的工人会先过桥。
- 如果没有正在过桥的工人,且桥右边也没有在等待的工人,同时旧仓库还剩下至少一个箱子需要搬运,此时在桥左边的工人可以过桥。如果同时有多个工人在左边等待,那么 效率最低 的工人会先过桥。
所有
n
个盒子都需要放入新仓库,请你返回最后一个搬运箱子的工人 到达河左岸 的时间。
-
思路:使用四个堆存放工人的下标和完成事件或者到达桥的时间,然后根据要求过桥、搬运箱子,放回最后一个搬运箱子的工人到达河左岸的时间
-
首先将
time
数组排序,排序后下标越大,效率越低,优先级越高 -
使用四个堆存放工人的下标和完成事件或者到达桥的时间
workL
:新仓库正在放箱的工人【在当前时间之前的所有工人均以完成事件,因此根据时间从小到大排序】waitL
:新仓库等待过桥的工人【低效率的先过桥,根据下标从大到小排序】【到达对岸的时间非必须,辅助作用】workR
:旧仓库正在拿箱的工人【在当前时间之前的所有工人均以完成事件,因此根据时间从小到大排序】waitLR
:旧仓库等待过桥的工人【低效率的先过桥,根据下标从大到小排序】
-
使用变量
cur
记录当前的时间,初始时,所有工人位于新仓库,因此将所有节点放入waitL
-
然后模拟整个流程,计算 n n n个工人从旧仓库到达新仓库,并选择箱子的时间
- 将
workL
和workR
中所有完成工作的工人,放入排队列表 - 选择右岸效率最低的工人过桥,若无,再选择左岸效率最低的工人过桥:时间
cur
移动至其到达对岸的时间节点,并更新其完成工作的时间,最后将其放入工作列表 - 若两个排队列表均为空,说明工人都在working,那么选择最快完成工作的工人,让他排队过桥
- 将
-
最后,计算所有工人回到左岸的时间,返回最终时间即可
- 分析可知,此时
waitR
一定没有元素【因为退出循环的条件是有 n n n个员工到达右岸,如果waitR
中有元素的话, n n n一定不为0,因此最后一个员工到达右岸时,waitR
一定没有元素】,而workR
一定有元素,其他两个堆是否有元素不影响结果,因此将workR
中工作的所有员工依次出队,若当前时间在其完成工作的时间之前,那么需要更新当前时间为其完成工作的时间,然后将当前时间更新为其到达左岸的时间,最后返回cur
【堆中根据完成时间从小到大排序,而每次只能过桥一个员工,因此可得最终时间】
- 分析可知,此时
-
-
实现
class Solution { public int findCrossingTime(int n, int k, int[][] time) { // 预处理 排序,下标越大,效率越低 Arrays.sort(time, (o1, o2) -> (o1[0] + o1[2] - o2[0] - o2[2])); PriorityQueue<int[]> workL = new PriorityQueue<int[]>((o1, o2) -> (o1[1] - o2[1])); PriorityQueue<int[]> waitL = new PriorityQueue<int[]>((o1, o2) -> (o2[0] - o1[0])); PriorityQueue<int[]> workR = new PriorityQueue<int[]>((o1, o2) -> (o1[1] - o2[1])); PriorityQueue<int[]> waitR = new PriorityQueue<int[]>((o1, o2) -> (o2[0] - o1[0])); for (int i = k - 1; i >= 0; i--){ waitL.add(new int[]{i, time[i][0]}); } int cur = 0; // 在过桥的时候其他人可以选择箱子和放下箱子 while (n > 0){ // 将新仓库完成放箱子的工人放入排队列表 while (!workL.isEmpty() && workL.peek()[1] <= cur){ int[] done = workL.poll(); waitL.add(done); } // 将旧仓库完成拿箱子的工人放入排队列表 while (!workR.isEmpty() && workR.peek()[1] <= cur){ int[] done = workR.poll(); waitR.add(done); } // 旧仓库的工人优先过桥 if (!waitR.isEmpty()){ int[] poll = waitR.poll(); cur += time[poll[0]][2]; poll[1] = cur + time[poll[0]][3];// 放完箱的时间 workL.add(poll); }else if (!waitL.isEmpty()){ int[] poll = waitL.poll(); cur += time[poll[0]][0]; poll[1] = cur + time[poll[0]][1]; // 拿好箱的时间 workR.add(poll); n--; }else if (workL.isEmpty()){// 工人都在working cur = workR.peek()[1]; }else if (workR.isEmpty()){ cur = workL.peek()[1]; }else{ cur = Math.min(workL.peek()[1], workR.peek()[1]); } } // 最后waitR一定没有元素,workR一定有元素,其他两个堆是否有元素不影响结果,因此将工作的员工依次出队,更新过桥时间,返回即可 while (!workR.isEmpty()){ int[] poll = workR.poll(); cur = Math.max(poll[1], cur) + time[poll[0]][2]; } // while (!workR.isEmpty() || !waitR.isEmpty()){ // // 如果员工都在working 那么将时间后移 // if (waitR.isEmpty()){ // cur = Math.max(cur, workR.peek()[1]); // } // // 将旧仓库完成拿箱子的工人放入排队列表 // while (!workR.isEmpty() && workR.peek()[1] <= cur){ // int[] done = workR.poll(); // waitR.add(done); // } // int[] poll = waitR.poll(); // cur += time[poll[0]][2]; // } return cur; } }
- 复杂度
- 时间复杂度: O ( n + l o g k ) O(n+logk) O(n+logk)
- 空间复杂度: O ( k ) O(k) O(k)
- 复杂度