数组中两个数的最大异或值【LC421】
Given an integer array
nums, return the maximum result ofnums[i] XOR nums[j], where0 <= i <= j < n.
字典树
-
思路
-
首先使用字典树存储数组中元素的二进制形式,由于 n u m s [ i ] ≤ 2 31 − 1 nums[i] \le 2^{31}-1 nums[i]≤231−1,因此需要用32位二进制表示;
-
然后枚举 n u m s [ i ] nums[i] nums[i],并将 n u m s [ 0 , i − 1 ] nums[0,i-1] nums[0,i−1]作为 n u m s [ j ] nums[j] nums[j]放入字典树中,找到使异或值最大的 n u m s [ j ] nums[j] nums[j]返回,然后更新结果
- 如果将 n u m s [ 0 , i ] nums[0,i] nums[0,i]放入字典树,那么当 i = 0 i=0 i=0时,只能返回自身,异或最大值为0
-
如何找到使异或值最大的 n u m s [ j ] nums[j] nums[j]?
从字典树的根节点开始遍历,并从最高位往低位查询,优先让每一位的异或结果为1,即优先匹配与之不同的二进制位【局部最优】,这样才能使最终的异或结果最大【全局最优】,
-
-
实现
class Solution { class TrieNode{ TrieNode[] next = new TrieNode[2]; } TrieNode root = new TrieNode(); public int findMaximumXOR(int[] nums) { TrieNode root; int res = 0; for (int num : nums){ add(num); res = Math.max(search(num) ^ num, res); } return res; } public void add(int x){ TrieNode p = root; for (int i = 31; i >= 0; i--){ int u = (x >> i) & 1; if (p.next[u] == null) p.next[u] = new TrieNode(); p = p.next[u]; } } public int search(int x){ int res = 0; TrieNode p = root; for (int i = 31; i >= 0; i--){ int u = (x >> i) & 1, v = 1 - u; if (p.next[v] != null) { res |= (v << i); p = p.next[v]; }else { res |= (u << i); p = p.next[u]; } } return res; } }- 复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
- 复杂度

2万+

被折叠的 条评论
为什么被折叠?



