QR分解、RQ分解与SVD

本文详细介绍了矩阵分解中的QR分解、RQ分解和SVD分解。QR分解通过Householder变换将矩阵转化为正交矩阵与上三角阵的乘积;RQ分解则是上三角阵与正交矩阵的乘积,可通过QR分解实现;SVD分解将矩阵分解为正交矩阵、非负对角阵和另一个正交矩阵,适用于压缩、信息提取和最小二乘问题的求解。文中还提及RQ分解在相机矩阵分解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

QR分解、RQ分解与SVD分解整理

 

1.QR分解

QR分解将一个m x m的矩阵A分解为一个正交矩阵Q与一个上三角阵R之积。常常利用Householder变换来进行QR分解的计算。

Householder变换可以将一个向量某一维度之外的其他维度化为0.以一个3 x 3的矩阵A为例。为了便于描述,假定*代表没有变化的元素,+为变换的元素,带有下标的H代表一个Householder变换。

H为一正交矩阵,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值