bzoj 1597: [Usaco2008 Mar]土地购买(斜率优化dp 例题)

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

  • 第1行: 一个数: N

  • 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

  • 第一行: 最小的可行费用.

题解:

本题是一道斜率优化的比较经典的题目,可以作为例题来学一下,我做这道题是为了巩固一下之前刚学的斜率优化,结果WA了好多次,整整卡了三天。。下面讲一下我的一些理解:

-> 不会斜率优化的童鞋可以去看我的另一篇博文,那是一道非常裸的斜率优化dp模板题,里面有讲解 <-

本题并不是非常裸的斜率优化,需要一点小小的预处理。
我们定义w[i]为第i快土地的宽度,l[i]为第i快土地的长度然后可以将所有的土地按照长度排序(按照宽度排序一样,没有太大差别),这是我们可以发现如果对于两块土地i,j(j>i),w[j]>=w[i],那么就说明第j块土地的长和宽都比第i块土地大,那么在购买第j块土地时,如果附带购买第i块土地的话是不用支付额外的费用的,我们将这样的土地删去,之后我们剩下的土地就是一个长度单调不减,宽度单调递增的序列,然后我们就可以dp了。
先写出本题的dp方程:
f[i]=min( f[j]+w[j+1]*l[i] );(i>j)
由于之前我们的预处理,那么第j+1到第i块土地间的长度最大值就是第i块,宽度最大值就是第j+1块,所以我们枚举i块之前的每块土地,假设我们上一次决策是买下第j块后结账,那么我们这次决策就要买下第j+1块到第i块,然后取最优值即可;
这样无疑是很慢的,n^2的复杂度,接下来就是斜率优化出场了:
我们还是按照老套路设G=f[i],y=f[j],k=l[i],x=w[j+1];
那么式子就是 G=y+k*x
即 :y=-k*x+G;
这样每块土地的决策就可以抽象成一个点。
这时我们会发现k是单调递增的,y是单增的,但是x是单减的,而且前面有一个负号,这样的形式显然是不能做斜率优化的。
首先让我们来观察一下这个图像:

这里写图片描述

这时很显然是不符合斜率优化的条件的,或者说很难搞。
那我们就可以把图像关于y轴对称一下,得到下面的图像:

这里写图片描述

这就是我们想要的图像啦!(象限不用管它,因为不影响结果)

还记得我们刚才的变量的意义和它们的解析式么?
G=f[i],y=f[j],k=l[i],x=w[j+1];
y=-k*x+G;
这时由于我们的对称操作,斜率和x坐标都变成了相反数,所以我们可以令x=-w[j+1],k不变,解析式就变成了y=k*x+G;这时x,y,k均是单增的就可以进行优化了!
之后的操作都和斜率优化一样了,建一个队列,存储已经加入点,建立指针指向当先的队首元素,然后枚举判断斜率即可。

我的错是出在宏定义上面!!我一直把宏定义当一个函数用,其实不是的,它的执行过程应该是将源代码中出现宏定义的地方替换掉!所以在宏定义中有符号时注意要加括号,不然在代码中出现时可能会出现符号问题;
还有就是要注意精度,强制类型转换时要把每一步都转换一遍!我一开始时用乘法的,结果炸long long,然后改成double,结果精度出了bug,,又是无限的WA,还好有小号。不然准炸飞 >_<

由于之前讲过斜率优化,所以本篇博文比较简略,有不懂的地方可以去看我的另一篇博文 ->再次推荐qwq <-

代码如下(略丑,尤其是类型转换部分,,因为实在是懒得改了>_<):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50010
#define x(i) (s[i+1].w*(-1))
#define y(i) f[i]
using namespace std;
struct ground { long long l,w; }s[N];
long long f[N],dl[N],top,tail,n;
bool cmp(ground x,ground y) { return x.l==y.l?x.w<y.w:x.l<y.l; }
bool check1(long long i,long long j,long long k) {
    return (double)((double)(y(j)-y(i))/(double)(x(j)-x(i)))<=(double)k;
}
bool check2(long long i,long long j,long long now) {
    return (double)((double)(y(now)-y(j))/(double)(x(now)-x(j)))<=(double)((double)(y(j)-y(i))/(double)(x(j)-x(i)));
}
void copy(long long i,long long j) {
    s[i].l=s[j].l;s[i].w=s[j].w; return;
}
long long in() {
    char c=0;long long s=0;
    while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9') s=s*10+c-'0',c=getchar();
    return s;
}
int main() {
    n=in(); for(int i=1;i<=n;i++) s[i].l=in(),s[i].w=in();
    sort(s+1,s+n+1,cmp);int now=1;
    for(int i=1;i<=n;i++) {
      while(now>0&&s[i].w>=s[now].w) now--;
      copy(++now,i);
    } top=tail=1;
    for(int i=1;i<=now;i++) {
      long long k=s[i].l;
      while(top<tail&&check1(dl[top],dl[top+1],k)) top++;
      f[i]=f[dl[top]]+k*s[dl[top]+1].w;
      while(tail>top&&check2(dl[tail-1],dl[tail],i)) tail--;
      dl[++tail]=i;
    } printf("%lld",f[now]);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值