1036: [ZJOI2008]树的统计Count
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 22707 Solved: 9214
[Submit][Status][Discuss]
Description
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
Input
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
Output
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
Sample Input
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
Sample Output
4
1
2
2
10
6
5
6
5
16
思路:
一年前看这个的时候,感觉代码实在太难写了。现在回头再看却觉得不过如此。
可能是写过一些dfs序+数据结构维护的题,再看这个算法就觉得好接受多了。
其实就是将树上的节点分成重链和轻链对应到线段树上去维护。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
using namespace std;
const int maxn=3e4+5;
const int inf=0x7fffffff;
int n,q,cnt,sz,u,v,t,ans;
int fa[maxn][15],val[maxn],deep[maxn],siz[maxn],head[maxn];
int pos[maxn],belong[maxn];//pos是在线段树中的位置,belong为结点在树中的链的顶端节点
char str[10];
struct data
{
int to,next;
}e[maxn*2];
struct node
{
int mx,sum;
}tr[maxn*4];
void add(int u,int v)
{
++cnt;
e[cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
void dfs1(int x,int f)//确定各个点的子树大小,深度,和各个节点的父亲。
{
siz[x]=1;
for(int i=1;i<=14;i++)
{
if(deep[x]<(1<<i)) break;
fa[x][i]=fa[fa[x][i-1]][i-1];
}
for(int i=head[x];i;i=e[i].next)
{
if(e[i].to==f) continue;
deep[e[i].to]=deep[x]+1;
fa[e[i].to][0]=x;
dfs1(e[i].to,x);
siz[x]+=siz[e[i].to];
}
}
void dfs2(int x,int chain)//分配重链和轻链
{
int k=0;
sz++;
pos[x]=sz;//pos为该节点在线段树中的位置
belong[x]=chain;
for(int i=head[x];i;i=e[i].next)
{
if(deep[e[i].to]>deep[x]&&siz[e[i].to]>siz[k])
k=e[i].to;
}
if(k==0) return;//如果找不到说明为叶子节点了。
dfs2(k,chain);//走重链
for(int i=head[x];i;i=e[i].next)//其他节点走轻链
{
if(deep[e[i].to]>deep[x]&&e[i].to!=k)
dfs2(e[i].to,e[i].to);
}
}
int lca(int x,int y)
{
if(deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
for(int i=0;i<=14;i++)//利用二进制快速将x移到和y同一层深度
if(t&(1<<i)) x=fa[x][i];
for(int i=14;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
}
if(x==y) return x;
else return fa[x][0];
}
void build(int i,int l,int r)
{
tr[i].mx=tr[i].sum=0;
if(l==r)
return;
int mid=(l+r)/2;
build(lson);
build(rson);
}
void update(int i,int l,int r,int x,int y)
{
if(l==r)
{
tr[i].mx=tr[i].sum=y;
return;
}
int mid=(l+r)/2;
if(x<=mid) update(lson,x,y);
else update(rson,x,y);
tr[i].sum=tr[2*i].sum+tr[2*i+1].sum;
tr[i].mx=max(tr[2*i].mx,tr[2*i+1].mx);
}
int querysum(int i,int l,int r,int x,int y)
{
int sum=0;
if(x<=l&&r<=y)
{
return tr[i].sum;
}
int mid=(l+r)/2;
if(x<=mid) sum+=querysum(lson,x,y);
if(y>mid) sum+=querysum(rson,x,y);
return sum;
}
int querymx(int i,int l,int r,int x,int y)
{
int mx=-inf;
if(x<=l&&r<=y)
{
return tr[i].mx;
}
int mid=(l+r)/2;
if(x<=mid) mx=max(mx,querymx(lson,x,y));
if(y>mid) mx=max(mx,querymx(rson,x,y));
return mx;
}
int solvesum(int x,int f)
{
int sum=0;
while(belong[x]!=belong[f])
{
sum+=querysum(1,1,n,pos[belong[x]],pos[x]);
x=fa[belong[x]][0];
}
sum+=querysum(1,1,n,pos[f],pos[x]);
return sum;
}
int solvemx(int x,int f)
{
int mx=-inf;
while(belong[x]!=belong[f])
{
mx=max(mx,querymx(1,1,n,pos[belong[x]],pos[x]));
x=fa[belong[x]][0];
}
mx=max(mx,querymx(1,1,n,pos[f],pos[x]));
return mx;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs1(1,0);
dfs2(1,1);
for(int i=1;i<=n;i++)
{
scanf("%d",&val[i]);
update(1,1,n,pos[i],val[i]);
}
scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%s",str);
if(str[1]=='M')
{
scanf("%d%d",&u,&v);
t=lca(u,v);
ans=max(solvemx(u,t),solvemx(v,t));
printf("%d\n",ans);
}
if(str[1]=='S')
{
scanf("%d%d",&u,&v);
t=lca(u,v);
ans=solvesum(u,t)+solvesum(v,t)-val[t];
printf("%d\n",ans);
}
if(str[1]=='H')
{
scanf("%d%d",&u,&v);
update(1,1,n,pos[u],v);
val[u]=v;
}
}
return 0;
}