我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。
让我们先来分析本次的A题!
电工杯数学建模(AB两题)完整内容可以在文章末尾领取!
让我们来看看A题,A题的第一个问题是:各园区独立运营储能配置方案及其经济性分析。
首先,定义变量:
-
购电量:Pb
-
弃风弃光电量:Pd
-
总供电成本:Ct
-
单位电量平均供电成本:Cp
-
储能功率:P
-
储能容量:E
-
充电效率:ηc
-
放电效率:ηd
-
运行寿命:T
则问题一可以转化为如下数学模型:
目标函数:min Ct = Pb + Cd
约束条件:
-
Pb = Pb_wind + Pb_pv + Pb_buy
-
Pd = Pd_wind + Pd_pv
-
P_wind + Pd_wind + Pb_wind = PLmax_wind
-
P_pv + Pd_pv + Pb_pv = PLmax_pv
-
Pb_buy = PLmax - (P_wind + Pd_wind + P_pv + Pd_pv)
-
P_wind = P_wind_pu * Pw * P
-
Pd_wind = Pd_wind_pu * Pw * P
-
P_pv = P_pv_pu * Ppv * P
-
Pd_pv = Pd_pv_pu * Ppv * P
-
Pb_buy = Pb_buy_pu * PLmax
-
E * ηc * ηd = P * T
-
0.1 * E <= P <= 0.9 * E
-
P >= 0
-
E >= 0
其中,Pb_wind为园区B购电量,Pb_pv为园区A和C购电量,Pb_buy为三个园区总共的购电量,Pd_wind为园区B弃风量,Pd_pv为园区A和C弃光量,P_wind为园区B风电出力,P_pv为园区A和C光伏出力,Pb_buy_pu为园区总购电量的归一化比例,P_wind_pu和P_pv_pu为风电和光伏发电的归一化比例,Pw为园区B的风电装机容量,Ppv为园区A和C的光伏装机容量,PLmax为三个园区总的最大负荷,Pd_wind_pu和Pd_pv_pu为弃风和弃光的归一化比例,E为储能容量,P为储能功率,ηc和ηd为充放电效率,T为运行寿命。
问题1:各园区独立运营储能配置方案及其经济性分析
-
未配置储能时各园区运行的经济性分析
设园区A、B、C的购电量分别为Pa、Pb、Pc,弃风弃光电量分别为Qa、Qb、Qc,总供电成本为Ca、Cb、Cc,单位电量平均供电成本为Ea、Eb、Ec。
根据题意,各园区独立运营时,可再生能源发电优先供给本区域负荷,不足部分从主电网购电。多余电量不允许向主电网出售(弃风、弃光)。因此,购电量为:
Pa = max(PLmax.A - Ppv.A, 0) + max(PLmax.A - Pw.A, 0) = 447kW + 0 = 447kW Pb = max(PLmax.B - Pw.B, 0) = 419kW - 1000kW = 0 Pc = max(PLmax.C - Ppv.C, 0) + max(PL