我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。
让我们先来分析本次的A题!
长三角数学建模(ABC三题)完整内容可以在文章末尾领取!
本次A题的第一个问题是在西湖游船上掉落到西湖里一款华为 Mate 60 Pro 手机,可能的掉落范围以及最优搜索策略是什么。
问题 1建模:
- 假设西湖的水是静水,不考虑水流的影响。
- 假设手机掉落的位置为(x,y),其中x为手机掉落的横坐标,y为手机掉落的纵坐标。
- 假设游船的位置为(x0,y0),其中x0为游船的横坐标,y0为游船的纵坐标。
- 假设游船的长度为L,宽度为W。
- 假设手机的长度为l,宽度为w。
- 假设游船和手机均为长方形,且游船和手机的边与水平线平行。
- 根据以上假设,可以得到手机掉落的范围为:
x∈[x0-w/2, x0+w/2]
y∈[y0-l/2, y0+l/2] - 最优搜索策略为:从游船的中心点(x0,y0)开始,向手机可能掉落的范围内搜索,直到找到手机为止。搜索的方向可以按照从上到下、从左到右的顺序进行。
问题1:
可能的掉落范围为手机掉落点的周围区域,最优搜索策略为通过探测器扫描水面,确定手机掉落的具体位置,再通过潜水员进行打捞。
设手机掉落点为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),探测器扫描半径为 r r r,则手机可能的掉落范围为以 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为圆心, r r r为半径的圆形区域,即:
( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ r 2 (x-x_0)^2+(y-y_0)^2 \leq r^2 (x−x0)2+(y−y0)2≤r2
最优搜索策略为通过探测器扫描水面,确定手机掉落的具体位置 ( x 0 , y 0 ) (x_0,y_0) (