离散数学 秒杀非同构无向树

本文探讨了如何构建非同构无向树,重点在于理解度数列(2233)的不同排列方式,包括忽略叶子节点,考虑节点的排列、旋转和对称性,列举出所有可能的非同构树形态,并介绍了这一过程的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

画非同构 无向树 知 度数列 或各个节点 的度

度数列(2 2 3 3) 非同构无向树

1.把叶子节点 忽略 只看度>=1 的节点

  1. 类化学的同分异构体的操作
    把度>=1的节点跳出

2 2 3 3

然后又节点排列 尝试,注意旋转和对称

2-2 -3- 3 

2-3-2-3   3 -2-3-2 重复了

3-2-2-3

2-3-3-2
   2
   |	
 2-3-3

一共五种

3.按数字的度数补充叶子

原理

画非同构图也同理

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值