Numpy提供了很多方式(函数)来创建数组对象,常用的方式如下:
•array
•arange
•ones / ones_like
•zeros / zeros_like
•empty / empty_like
•full / full_like
•eye / identity
•linspace
•logspace
•frombuffer
•fromiter
•fromfunction
说明:
•注意arange函数,不是arrange。
•arange与linspace的区别。
1、array实例
def npsum():
a=np.array([1,2,3,4,5])
b=np.array([2,3,4,1,2])
c=a2+b2
return c
print(npsum())
2、python中的range()函数生成list
语法:range(start, end, step) 指定起始范围和步长
步长不能为浮点
3、arange功能更强大:步长可以是浮点数,也可以是负数
4、创建值全为1的数组。
n = np.ones((3, 4)) # 生成一个 3行4列的 元素全部都是 1 的一个二维数组
display(n)
创建值全为0的数组。
n = np.zeros((3, 4))
display(n)
创建值全为-8.8的数组。
n = np.full((3, 4), -8.8) # 第一个参数;维度, 第二个参数;填充的元素的值
display(n)
array([[-8.8, -8.8, -8.8, -8.8],
[-8.8, -8.8, -8.8, -8.8],
[-8.8, -8.8, -8.8, -8.8]])