史上最小白之RNN详解

1.前言

网上目前已经有诸多优秀的RNN相关博客,但是我写博客的出发点主要是为了加深和巩固自己的理解,所以还是决定自己再进行一下总结和描述,如有不正确的地方欢迎指正~

2.区分RNN

循环神经网络(Recurrent Neural Network),递归神经网络(Recursive Neural Network),你有没有发现他们的缩写都是RNN,那他们两个是同一回事儿吗?网上有一些博客把这两就当成了同一个RNN来说明,包括我自己在学习的时候也一直认为循环神经网络跟递归神经网络没什么区别,直到我自己写博客的时候才发现他们原来根本就不是同一回事儿,这也许就是写博客的好处吧。对于递归神经网络 RNN我自己也不是很熟悉,这里就暂时先不介绍,等我完全搞懂了后再写吧。
下文所述的RNN全是指代循环神经网络。

3.循环神经网络 Recurrent Neural Network

3.1为什么需要循环神经网络 RNN

在这里插入图片描述
上图是一幅全连接神经网络图,我们可以看到输入层-隐藏层-输出层,他们每一层之间是相互独立地,(框框里面代表同一层),每一次输入生成一个节点,同一层中每个节点之间又相互独立的话,那么我们每一次的输入其实跟前面的输入是没有关系地。这样在某一些任务中便不能很好的处理序列信息。
什么是序列信息呢?
通俗理解就是一段连续的信息,前后信息之间是有关系地,必须将不同时刻的信息放在一起理解。
比如一句话,虽然可以拆分成多个词语,但是需要将这些词语连起来理解才能得到一句话的意思。
RNN就是用来处理这些序列信息的任务,比如NLP中的语句生成问题,一句话中的每个词并不是单独存在地,而是根据上下文信息,与他的前后词有关。
如:我吃XXX,吃是一个动词,按照语法规则,那么它后面接名词的概率就比较大,在预测XXX是什么的时候就要考虑前面的动词吃的信息,如果没考虑上下文信息而预测XXX是一个动词的话,动词+动词,很大概率是不符合语言逻辑地。
为了解决这一问题,循环神经网络 RNN也就应运而生了。

3.2循环神经网络 RNN的结构

在这里插入图片描述
先看左半边图,如果不看隐藏层中的W,把它忽略,那么这其实就相当于是一个全连接神经网络的结构。那么从左图中就可以看出RNN呢其实就只是相当于在全连接神经网络的隐藏层增加了一个循环的操作。至于这个循环的操作具体是怎样的呢?单看左图可能有些懵逼,那么现在看上右图。上右图是RNN网络结构按照时间线展开图。
Xt是t时刻的输入,是一个[x0,x1,x2…xn]的向量
U是输入层到隐藏层的权重矩阵
St是t时刻的隐藏层的值
W是上一时刻的隐藏层的值传入到下一时刻的隐藏层时的权重矩阵
V是隐藏层到输出层的权重矩阵
Ot是t时刻RNN网络的输出
从上右图中可以看出这个RNN网络在t时刻接受了输入Xt之后,隐藏层的值是St,输出的值是Ot。但是从结构图中我们可以发现St并不单单只是由Xt决定,还与t-1时刻的隐藏层的值St-1有关。
这样,所谓的隐藏层的循环操作也就不难理解了,就是每一时刻计算一个隐藏层地值,然后再把该隐藏层地值传入到下一时刻,达到信息传递的目的。
具体隐藏层值St计算公式如下:
S t = f ( U ⋅ X t + W ⋅ S t − 1 + b ) S_t=f(U\cdot X_t + W\cdot S_{t-1}+b) St=f(UXt+WSt1+b)
得到t时刻隐藏层的值后,再计算输出层的值:
O t = g ( V ⋅ S t ) O_t=g(V\cdot S_t) Ot=g(VSt)
注意:在同一层隐藏层中,不同时刻的W,V,U均是相等地,这也就是RNN的参数共享。
怎么理解这个参数共享呢?
我自己的理解是,虽然说X{t-1},X{t},X{t+1}是表示不同时刻的输入,但是他们输入到RNN网络中的时候并不是作为单独的向量一个一个输入地,而是组合在一起形成一个矩阵输入,然后这个矩阵再通过权重矩阵U的变化,其实是同一时刻输入地,只是计算的先后顺序不同。因此同一个隐藏层中,不同时刻的输入他们的W,V,U参数是共享地。
接下来详细说明一下公式:
在这里插入图片描述

3.3循环神经网络 RNN的训练方法

训练RNN常用的一种方法是 BPTT算法(back-propagation through time),其本质也是BP算法(Backpropagation Algorithm),BP算法的本质其实又是梯度下降法,这边默认大家已经了解了梯度下降和反向传播算法的原理。
在这里插入图片描述
上图是带入了RNN 损失函数Loss的按时间线结构展开图。ht相当于是之前介绍过的隐藏层的值St
在RNN的训练调参过程中,需要调优的参数只有W,U,V三个
O t = g ( V ⋅ S t ) O_t=g(V\cdot S_t) Ot=g(VSt)
在这里插入图片描述
因为ht与h{t-1}有关,而h{t-1}中也有W和U,因此W和U的偏导的求解需要涉及到历史所有时刻的数据,其偏导求起来相对复杂,我们先假设只有三个时刻,那么在第三个时刻也就是t=3时 L对W的偏导数为:
在这里插入图片描述
整体的偏导公式就是将所有时刻的偏导数加起来
在这里插入图片描述
来看看蓝框部分是一个连乘的形式,ht的计算公式引入激活函数f()后如下:
在这里插入图片描述
诶,现在想起来之前上面是不是还有一个坑没填,就是为什么要选择tanh作为隐藏层的激活函数呢?
从上面的式子我们可以看到,引入了激活函数tanh和sigmoid的导数连乘,那我们再看看这两个激活函数导数的图像:
在这里插入图片描述
在这里插入图片描述
可以看到sigmoid函数和tanh函数的导数始终是小于1地,如果把众多小于1的数连乘,那么就会出现梯度消失的情况。梯度消失之前在介绍CNN的时候有说到,这里就不再赘述了。
sigmoid函数的导数介于[0,0.25]之间,tanh函数的导入为[0,1]之间,虽然他们两者都存在梯度消失的问题,但tanh比sigmoid函数的表现要好,梯度消失得没有那么快。
你可能会要问之前在CNN中为了解决梯度消失问题是采用了ReLU激活函数,那么为什么RNN中不选用ReLU激活函数来彻底解决梯度消失的问题呢?
其实在RNN中使用ReLU函数确实也是能解决梯度消失的问题地,但是又会引入一个新问题梯度爆炸,先看看ReLU函数和其导数图:
在这里插入图片描述
因为ReLu的导数恒为1,由上面的公式我们发现
在这里插入图片描述
激活函数的导数每次需要乘上一个Ws,只要Ws的值大于1的话,经过多次连乘就会发生梯度爆炸的现象。但是这里的梯度爆炸问题也不是不能解决,可以通过设定合适的阈值解决梯度爆炸的问题。
但是目前大家在解决梯度消失问题地时候一般都会选择使用LSTM这一RNN的变种结构来解决梯度消失问题,而LSTM的激活函数又是选择的tanh,还不会引入梯度爆炸这种新问题,所以可能也就没有必要在基础的RNN上过多的纠结是选用ReLU还是tanh了吧,因为大家实际中用的都是LSTM,只需要理解RNN的思想就行了,于是就选择了一个折中的比sigmoid效果好,又不会引入新的梯度爆炸问题地tanh作为激活函数。
当然以上只是一种很不严谨地我个人的理解,知乎上有一个专门的问答里面有详细的回答介绍。RNN 中为什么要采用 tanh,而不是 ReLU 作为激活函数?
总之需要知道RNN中也能够使用ReLU激活函数来解决梯度消失问题,但是用来ReLU之后引入了新的梯度爆炸问题就得不偿失了,因此在梯度消失这个问题上选择用LSTM来优化是更好的选择。至于LSTM之后再详细介绍!先挖个坑~

3.4 循环神经网络RNN的多种类型任务
3.4.1one-to-one

在这里插入图片描述
输入的是独立地数据,输出的也是独立地数据,基本上不能算作是RNN,跟全连接神经网络没有什么区别

3.4.2one-to-n

在这里插入图片描述
输入的是一个独立数据,需要输出一个序列数据,常见的任务类型有:
基于图像生成文字描述
基于类别生成一段语言,文字描述

3.4.3n-to-n

在这里插入图片描述
最为经典地RNN任务,输入和输出都是等长地序列
常见的任务有:
计算视频中每一帧的分类标签
输入一句话,判断一句话中每个词的词性

3.4.4n-to-one

在这里插入图片描述
输入一段序列,最后输出一个概率,通常用来处理序列分类问题。
常见任务:
文本情感分析
文本分类

3.4.5n-to-m

在这里插入图片描述
输入序列和输出序列不等长地任务,也就是Encoder-Decoder结构,这种结构有非常多的用法:
机器翻译:Encoder-Decoder的最经典应用,事实上这结构就是在机器翻译领域最先提出的
文本摘要:输入是一段文本序列,输出是这段文本序列的摘要序列
阅读理解:将输入的文章和问题分别编码,再对其进行解码得到问题的答案
语音识别:输入是语音信号序列,输出是文字序列
基于Encoder-Decoder的结构后续有改良出了NLP中的大杀器transformer和Bert,今后有机会再详细介绍把~

4.BiRNN 双向RNN

虽然RNN达到了传递信息的目的,但是只是将上一时刻的信息传递到了下一时刻,也就是只考虑到了当前节点前的信息,没有考虑到该节点后的信息。具体到NLP中,也就是一句话,不仅要考虑某个词上文的意思,也还要考虑下文的意思,这个时候普通的RNN就做不到了。于是就有了双向RNN(Bidirectional RNN)。

4.1BiRNN结构

在这里插入图片描述
上面是BiRNN的结构图,蓝框和绿框分别代表一个隐藏层,BiRNN在RNN的基础上增加了一层隐藏层,这层隐藏层中同样会进行信息传递,两个隐藏层值地计算方式也完全相同,只不过这次信息不是从前往后传,而是从后往前传,这样不仅能考虑到前文的信息而且能考虑到后文的信息了。
实现起来也很简单,比如一句话,“我爱NLP”,进行分词后是[“我”,“爱”,“NLP”],输入[[“我”],[“爱”],[“NLP”]],计算forward layer隐藏层值,然后将输入数据翻转成[[“NLP”],[“爱”],[“我”]],计算backward layer 隐藏层值,然后将两个隐藏层的值进行拼接,再输出就行啦。
这就是BiRNN的原理,理解了RNN的原理,应该来说还是比较简单地。

5.DRNN 深层RNN

在这里插入图片描述
上图是DRNN的结构图,很简单,每一个红框里面都是一个BiRNN,然后一层BiRNN的输出值再作为另一个BiRNN的输入。多个BiRNN堆叠起来就成了DRNN。

6.结语

至此基于RNN的基本结构和原理,就已经全部介绍完了,这里没有对LSTM和Encoder-Decoder做过多的介绍,后续有机会会补上地。如果还有什么不懂的地方,或者发现有错误的地方欢迎指出~
生命不息,学习不止,大家一起加油吧,奥利给!!!

7.参考

RNN
RNN 结构详解

  • 312
    点赞
  • 1537
    收藏
    觉得还不错? 一键收藏
  • 25
    评论
Transformer 是一种强大的神经网络结构,广泛应用于自然语言处理领域,特别是在机器翻译任务中取得了很好的效果。下面是一个简单的 Transformer 模型,适合小白入门: 1. 输入嵌入层 Transformer 模型的输入是一个序列,比如文本句子或音频波形。为了能够把这个序列喂给神经网络,我们需要先对它进行嵌入(embedding)。嵌入层将每个输入元素(比如单词或音频样本)映射为一个高维向量,这个向量包含了这个元素的语义信息。 2. 位置编码层 由于 Transformer 模型是基于注意力机制的,它并没有像循环神经网络RNN)或卷积神经网络(CNN)那样具有显式的位置信息。因此,在输入嵌入层之后,我们需要添加一个位置编码层,用于将输入序列中的每个元素与其位置相关联。 3. 编码器 编码器是 Transformer 模型的核心组件之一。它由多个相同的层组成,每层都包含两个子层: - 多头自注意力机制层(Multi-Head Self-Attention Layer):用于计算输入序列中每个元素与其他元素的相关性,以便在后续处理中更好地捕捉上下文信息。 - 前馈神经网络层(Feed-Forward Neural Network Layer):用于在每个位置上独立地处理输入向量,以便提取局部特征。 编码器的输出是一个新的序列,它将输入序列中的每个元素映射到一个新的表示空间中。 4. 解码器 解码器也是由多个相同的层组成的,每个层都包含两个子层: - 多头自注意力机制层(Multi-Head Self-Attention Layer):与编码器中的自注意力机制层类似,用于计算输入序列中每个元素与其他元素的相关性,以便在后续处理中更好地捕捉上下文信息。 - 多头注意力机制层(Multi-Head Attention Layer):用于计算输入序列与编码器输出序列之间的相关性,以便在解码器输出时引入上下文信息。 解码器的输出是一个新的序列,其中每个元素都表示一个目标语言的单词或音频样本。 5. 输出层 输出层将解码器输出序列中的每个元素映射为目标语言中的单词或音频样本。在机器翻译任务中,通常使用 Softmax 函数将输出向量转换为一个概率分布,然后选择概率最大的单词作为输出。 以上就是一个简单的 Transformer 模型的主要组件,希望能够帮助你入门 Transformer。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值