在了解堆排序之前巩固一下,前中后 序遍历
一、前序遍历(根左右)
首先访问根节点,依次访问左节点和右节点,同左节点又是一个根节点,再次根左右,遇到根就再执行一个根左右
二、中序遍历(左根右)
一样的道理先访问左节点再访问根节点,再访问右节点
三、后序遍历
先左节点再右节点,最后访问根节点
其次我们要了解数组转换成树
大堆树
根节点比左右节点都大
例如:
小堆树
根节点比左右节点都小
例如:
堆排序首先要将数组转换成大堆树,或者是小堆树
也就是说转换成根节点要比左右节点小,或者是比左右子节点大
样例代码
//将数组转换成小堆化
public static void MinHeap(int[] arr){
int n = arr.length;
for(int i = n/2-1;i>=0;i--){//遍历根节点从最后一个开始
MinHeapFixDown(arr,i,n);
}
}
static void MinHeapFixDown(int[] arr,int i,int n){
int left = 2 * i + 1;
int right = 2 * i + 2;
if(left>=n){
return;
}
int min = left;
if(right>=n){
min = left;
}else{
if(arr[left]<arr[right]){
min = left;
}else{
min = right;
}
}
if(arr[i]<arr[min]){
return;
}
int t = arr[i];arr[i] = arr[min];arr[min] = t;
MinHeapFixDown(arr,min,n);
}
//将数组转换成大堆化
public static void MaxHeap(int[] arr){
int n = arr.length;
for(int i = n/2-1;i>=0;i--){//遍历根节点从最后一个开始
MaxHeapFixDown(arr,i,n);
}
}
static void MaxHeapFixDown(int[] arr,int i,int n){
int left = 2 * i + 1;
int right = 2 * i + 2;
if(left>=n){
return;
}
int max = left;
if(right>=n){
max = left;
}else{
if(arr[left]>arr[right]){
min = left;
}else{
min = right;
}
}
if(arr[i]>arr[max]){
return;
}
int t = arr[i];arr[i] = arr[min];arr[min] = t;
MinHeapFixDown(arr,min,n);
}
那如何实现堆排序进行排序呢
小堆树最小的一定在下标为0的位置
大堆树最大的一定在下标为0的位置
①首先将数组变成小堆树或者是大堆树
②将数组中的下标0 和最后一个下标交换,那么最小的或者是最大就排到了最后;
③因为将最后一个下标拿到第一个了,那么就不满足大堆树或者小堆树,那么将0……n-2重新堆化
注意大堆树为增序,小堆树为降序
//降序
public static void MinHeapSort(int[] arr){
MinHeap(arr);
for(int i = arr.length-1;i>0;i--){
int t = arr[0];arr[0] = arr[i];arr[i] = t;
MinHeapFixDown(arr,0,i);
}
}
//增序
public static void MaxHeapSort(int[] arr){
MaxHeap(arr);
for(int i = arr.length-1;i>0;i--){
int t = arr[0];arr[0] = arr[i];arr[i] = t;
MaxHeapFixDown(arr,0,i);
}
}