【CodeForces - 461B】Appleman and Tree

@Appleman and Tree@


@题目描述@-English

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.
Consider a set consisting of k (0 ≤ k < n) edges of Appleman’s tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.
Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (10^9 + 7).

Input
The first line contains an integer n (2  ≤ n ≤ 10^5) — the number of tree vertices.
The second line contains the description of the tree: n - 1 integers p0, p1, …, pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.
The third line contains the description of the colors of the vertices: n integers x0, x1, …, xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output
Output a single integer — the number of ways to split the tree modulo 1000000007 (10^9 + 7).

Some Example

Input
3
0 0
0 1 1
Output
2

Input
6
0 1 1 0 4
1 1 0 0 1 0
Output
1

Input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
Output
27

@大致题意@

Appleman 有一个含有n(2  ≤ n ≤ 10^5)个顶点的树,其中有一些是黑色的。Appleman闲来无事,想要砍掉几条边,使得剩下的连通块块儿各含有一个黑点(显然砍掉的边应该是黑色节点数 - 1)。顶点编号为0~n-1
现输入n;输入n-1个数,第i个数Pi表顶点i与Pi连通;再输入n个数,依次表示各个顶点的颜色,0白1黑。
让你求满足Appleman要求的方案数模10^9 + 7。


@分析@

裸的树形dp计数。

@dp-状态定义@

一颗树
现在来想想怎么定义状态吧。如图所示一棵有根树,想象将它分成几个连通块后,最特殊的是哪一块呢?显然是包含根节点的那个连通块!包含根节点那个连通块内的黑点,来源有三处:它的子树,它本身,它的父亲以上【如果它有父亲】。如果是它的父亲以上,可以交给它的父亲递归处理。如果是它本身,那它的子树要么不连通自力更生,要么连通洗白自我。如果在它的子树上,则某棵子树要养活父节点。
则我们定义二维状态: dp[i][2] d p [ i ] [ 2 ]

dp[i][0]ii d p [ i ] [ 0 ] : 以 i 为 根 的 子 树 割 完 边 后 , 含 i 的 连 通 块 不 含 黑 点 的 方 案 总 数

dp[i][1]ii d p [ i ] [ 1 ] : 以 i 为 根 的 子 树 割 完 边 后 , 含 i 的 连 通 块 含 一 个 黑 点 的 方 案 总 数

下一步:状态转移方程式。

@dp-状态转移方程式@

考虑到根的颜色可能会对状态转移产生影响(显然的,因为如果根都是黑的怎么会有全白的状态!!!),我们进行分类讨论:
1)根为黑点时:显然 dp[i][0]=0 d p [ i ] [ 0 ] = 0 。考虑状态 dp[i][1] d p [ i ] [ 1 ] ,对于每颗子树 j j ,如果不连通,子树要自力更生即通过状态dp[j][1]转移(因为含根节点 j j 的连通块要有一个黑点);如果连通,子树的连通部分不能含任何黑点!,即dp[j][0]。通过加法原理(为什么?我的理解就是因为这两种情况不可共存,互相约束)将两种方案数相加,得到一棵子树的方案数。再用乘法原理(同上,每颗子树互相之间没有约束,情况可以共存)将各个子树的方案数相乘,得到总方案数。即:

dp[i][0]=0 d p [ i ] [ 0 ] = 0

dp[i][1]=jji(dp[j][0]+dp[j][1]) d p [ i ] [ 1 ] = ∏ j j 是 i 的 儿 子 ( d p [ j ] [ 0 ] + d p [ j ] [ 1 ] )

2)根为白点时:当你求 dp[i][0] d p [ i ] [ 0 ] 时,同根为黑点时的 dp[i][1] d p [ i ] [ 1 ] 情况一般:如果不连通,子树要 自力更生即通过状态 dp[j][1] d p [ j ] [ 1 ] 转移(因为含根节点 j j 的连通块要有一个黑点);如果连通,子树的连通部分不能含任何黑点!,即dp[j][0]【对我就是复制的2333】。
但!!! dp[i][1] d p [ i ] [ 1 ] 是个难搞的状态。回到我们上面的讨论,“包含根节点那个连通块内的黑点,来源有三处:它的子树,它本身,它的父亲以上”。此处既不是它本身,也不与它父节点相关。那只能是在它的子树里 选且只选一个子树,并让其连通根节点。假设其为 k k ,我们可以得到如下的转移:
dp[i][1]=jji(dp[j][0]+dp[j][1])dp[k][0]+dp[k][1]dp[k][1]

多么美好的想法啊!
可惜在模运算的情况下,除法是行不通的。 只能逆元
尽管学长说,逆元写习惯了,没啥子问题。但是我内心还是拒绝的。但是,利用累乘的思想,我们可以提出以下的状态转移:
令前 k1 k − 1 颗子树中,与根连通部分不含黑点的方案数为 f1 f 1 ,与根连通部分含一个黑点的方案数为 f2 f 2
对于第 k k 颗子树,若它被选中了!它必须连通且含有一颗黑点,则方案数为f1dp[k][1]
若它不幸没有入选……它可不连通 自力更生,或连通但洗白自己,方案数为 f2(dp[k][0]+dp[k][1]) f 2 ∗ ( d p [ k ] [ 0 ] + d p [ k ] [ 1 ] )
不断维护 f2=f1dp[k][1]+f2(dp[k][0]+dp[k][1]) f 2 = f 1 ∗ d p [ k ] [ 1 ] + f 2 ∗ ( d p [ k ] [ 0 ] + d p [ k ] [ 1 ] ) f1=f1(dp[k][0]+dp[k][1]) f 1 = f 1 ∗ ( d p [ k ] [ 0 ] + d p [ k ] [ 1 ] ) 一定要先维护f2,重点强调!!!!),最终 f2 f 2 就是我们的 dp[i][1] d p [ i ] [ 1 ]
其实我们发现, f1 f 1 也就是我们的 dp[i][0] d p [ i ] [ 0 ] ,所以 f1 f 1 f2 f 2 根本不需要真实出现,只是我们脑中用于辅助的思想。然后就可以码代码了。

@这里是代码@

各位实在不懂……就只能依靠自己的代码阅读能力咯 ̄ω ̄=

#include<cstdio>
#include<vector>
using namespace std;
const long long MOD = 1000000000ll + 7;
const int MAXN = 100000;
vector<int>G[MAXN + 5];
long long dp[MAXN + 5][4], r[MAXN + 5];
int col[MAXN + 5];
int N, P;
void dfs(int x,int pre) {
    dp[x][0] = dp[x][1] = 1;
    if( col[x] == 1 ) {
        dp[x][0] = 0;
        for(int i=0;i<G[x].size();i++) {
            int p = G[x][i];
            if( p == pre )
                continue;
            dfs(p, x);
            dp[x][1] = dp[x][1] * (dp[p][1] + dp[p][0]) % MOD;
        }
    }
    else {
        dp[x][1] = 0;
        for(int i=0;i<G[x].size();i++) {
            int p = G[x][i];
            if( p == pre )
                continue;
            dfs(p, x);
            dp[x][1] = (dp[x][1] * (dp[p][0] + dp[p][1])%MOD + (dp[x][0] * dp[p][1]))%MOD;
            dp[x][0] = dp[x][0] * (dp[p][0] + dp[p][1])%MOD;
        }
    }
}
int main() {
    scanf("%d",&N);
    for(int i=0;i<N-1;i++) {
        scanf("%d",&P);
        G[P].push_back(i+1);
        G[i+1].push_back(P);
    }
    for(int i=0;i<N;i++)
        scanf("%d",&col[i]);
    dfs(0, -1);
    printf("%lld\n",dp[0][1]);
}

@大致总结一下@

这道题模板性很强,且是dp特别是树形dp中比较少见的计数性问题【因为dp一般都是最优化问题】,算是可供积累的好题。一些技巧:1)反复用于计数问题特有的加法原理与乘法原理求解,2)当涉及模运算中的“除法”时——逆元时,深入想想,用累乘巧妙跳过了复杂的实现。
累乘也算是树dp一种技巧,用得好可以简化代码的复杂度,但也要想很久才能保证正确。

@END.@

就是这样,新的一天里,也请多多关照哦(ノω<。)ノ))☆.。~

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值